
1/23/2020 Authenticating service-to-service | Cloud Run Documentation | Google Cloud

https://cloud.google.com/run/docs/authenticating/service-to-service 1/3

Serverless Computing

Cloud Run: Serverless Computing

Documentation Guides

If your architecture is using multiple services, these services will likely need to communicate
with each other.

You can use synchronous or asynchronous service-to-service communication:

For asynchronous communication, use

Cloud Tasks
 (https://cloud.google.com/tasks/docs/creating-http-target-
tasks#http_target_tasks_with_authentication_tokens)

for one to one asynchronous communication

Pub/Sub (https://cloud.google.com/run/docs/events/pubsub-push) for one to many
asynchronous communication

For synchronous communication, one service invokes another one over HTTP using its
endpoint URL. In this use case, it's a good idea to ensure that each service is only able to make
requests to speci�c services. For instance, if you have a login service, it should be able to
access the user-profiles service, but it probably shouldn't be able to access the search
service.

First, you'll need to con�gure the receiving service to accept requests from the calling service:

1. Grant the Cloud Run Invoker (roles/run.invoker) role to the calling service identity
 (https://cloud.google.com/run/docs/securing/service-identity) on the receiving service. By
default, this identity is PROJECT_NUMBER-compute@developer.gserviceaccount.com.

1. Go to the Google Cloud Console:

GO TO GOOGLE CLOUD CONSOLE (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/RUN/)

2. Select the receiving service.

3. Click Show Info Panel in the top right corner to show the Permissions tab.

 (https://cloud.google.com/products/serverless/)

 (https://cloud.google.com/run/)

 (https://cloud.google.com/run/docs/)

Authenticating service-to-service

CONSOLE UI GCLOUD

https://cloud.google.com/products/serverless/
https://cloud.google.com/run/
https://cloud.google.com/run/docs/
https://cloud.google.com/run/docs/
https://cloud.google.com/tasks/docs/creating-http-target-tasks#http_target_tasks_with_authentication_tokens
https://cloud.google.com/run/docs/events/pubsub-push
https://cloud.google.com/run/docs/securing/service-identity
https://console.cloud.google.com/run/

1/23/2020 Authenticating service-to-service | Cloud Run Documentation | Google Cloud

https://cloud.google.com/run/docs/authenticating/service-to-service 2/3

4. In the Add members �eld, enter the identity of the calling service.

5. Select the Cloud Run Invoker role from the Select a role drop-down menu.

6. Click Add.

In the calling service, you'll need to:

1. Create a Google-signed OAuth ID token with the audience (aud) set to the URL of the
receiving service. This value must contain the schema pre�x (http:// or https://) and
custom domains are currently not supported for the aud value.

2. Include the ID token in an Authorization: Bearer ID_TOKEN header in the request to the
service.

Note: ID tokens are JSON Web Tokens (JWTs) (https://en.wikipedia.org/wiki/JSON_Web_Token) that

expire approximately an hour after creation. If you fetch tokens from the metadata server

 (https://cloud.google.com/run/docs/securing/service-identity#identity_tokens), you will always get a

valid token. If you choose to cache tokens yourself, you can decode the token and check the exp time

see if you need to refresh the token.

NODEJS PYTHON GO

// Make sure to `npm install --save request-promise` or add the dependency to your
const request = require('request-promise');

const receivingServiceURL = ...

// Set up metadata server request
// See https://cloud.google.com/compute/docs/instances/verifying-instance-identity#
const metadataServerTokenURL = 'http://metadata/computeMetadata/v1/instance/service
const tokenRequestOptions = {
 uri: metadataServerTokenURL + receivingServiceURL,
 headers: {
 'Metadata-Flavor': 'Google'
 }
};

// Fetch the token, then provide the token in the request to the receiving service
request(tokenRequestOptions)
 .then((token) => {
 return request(receivingServiceURL).auth(null, null, true, token)
 })

https://en.wikipedia.org/wiki/JSON_Web_Token
https://cloud.google.com/run/docs/securing/service-identity#identity_tokens

1/23/2020 Authenticating service-to-service | Cloud Run Documentation | Google Cloud

https://cloud.google.com/run/docs/authenticating/service-to-service 3/3

Calling from outside GCP

If you're invoking a service from a compute instance that doesn't have access to compute
metadata (e.g. your own server), you'll have to manually generate the proper token:

1. Self-sign a service account JWT with the target_audience claim set to the URL of the
receiving service.

2. Exchange the self-signed JWT for a Google-signed ID token, which should have the aud
claim set to the above URL.

3. Include the ID token in an Authorization: Bearer ID_TOKEN header in the request to the
service.

The Cloud IAP docs have sample code
 (https://cloud.google.com/iap/docs/authentication-howto#authenticating_from_a_service_account) to
demonstrate this functionality.

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License
 (https://creativecommons.org/licenses/by/4.0/), and code samples are licensed under the Apache 2.0 License
 (https://www.apache.org/licenses/LICENSE-2.0). For details, see our Site Policies
 (https://developers.google.com/terms/site-policies). Java is a registered trademark of Oracle and/or its a�liates.

Last updated December 4, 2019.

 .then((response) => {
 res.status(200).send(response);
 })
 .catch((error) => {
 res.status(400).send(error);
 });

https://cloud.google.com/iap/docs/authentication-howto#authenticating_from_a_service_account
https://creativecommons.org/licenses/by/4.0/
https://www.apache.org/licenses/LICENSE-2.0
https://developers.google.com/terms/site-policies

