
1/23/2020 Development tips | Cloud Run Documentation | Google Cloud

https://cloud.google.com/run/docs/tips 1/8

Serverless Computing

Cloud Run: Serverless Computing

Documentation Guides

This guide provides best practices for designing, implementing, testing, and deploying a Cloud
Run service. For more tips, see Migrating an Existing Service
 (https://cloud.google.com/run/docs/migrating).

Writing e�ective services

This section describes general best practices for designing and implementing a Cloud Run
service.

Avoiding background activities

When an application running on Cloud Run �nishes handling a request, the container instance's
access to CPU will be disabled or severely limited. Therefore, you should not start background
threads or routines that run outside the scope of the request handlers.

Running background threads can result in unexpected behavior because any subsequent
request to the same container instance resumes any suspended background activity.

Background activity is anything that happens after your HTTP response has been delivered.
Review your code to make sure all asynchronous operations �nish before you deliver your
response.

If you suspect there may be background activity in your service that is not readily apparent you
can check your logs: look for anything that is logged after the entry for the HTTP request.

Deleting temporary �les

In the Cloud Run (fully managed) environment disk storage is an in-memory �lesystem. Files
written to disk consume memory otherwise available to your service, and can persist between
invocations. Failing to delete these �les can eventually lead to an out-of-memory error and a
subsequent cold start.

 (https://cloud.google.com/products/serverless/)

 (https://cloud.google.com/run/)

 (https://cloud.google.com/run/docs/)

Development tips

https://cloud.google.com/products/serverless/
https://cloud.google.com/run/
https://cloud.google.com/run/docs/
https://cloud.google.com/run/docs/
https://cloud.google.com/run/docs/migrating

1/23/2020 Development tips | Cloud Run Documentation | Google Cloud

https://cloud.google.com/run/docs/tips 2/8

Repo�ing errors

Handle all exceptions and do not let your service crash on errors. A crash leads to a cold start
while tra�c is queued for a replacement container instance.

See the Error reporting guide (https://cloud.google.com/run/docs/error-reporting) for information on
how to properly report errors.

Optimizing pe�ormance

This section describes best practices for optimizing performance.

Sta�ing services quickly

Because container instances are scaled as needed, a typical method is to initialize the
execution environment completely. This kind of initialization is called "cold start". If a client
request triggers a cold start, the container instance startup results in additional latency.

The startup routine consists of:

Starting the service

Retrieving the container image

Starting the container

Running the entrypoint (https://docs.docker.com/engine/reference/builder/#entrypoint)

command to start your server.

Checking for the open service port.

Optimizing for service startup speed minimizes the latency that delays a container instance
from serving requests.

Using dependencies wisely

If you use a dynamic language with dependent libraries, such as importing modules in Node.js,
the load time for those modules adds latency during a cold start. Reduce startup latency in
these ways:

https://cloud.google.com/run/docs/error-reporting
https://docs.docker.com/engine/reference/builder/#entrypoint

1/23/2020 Development tips | Cloud Run Documentation | Google Cloud

https://cloud.google.com/run/docs/tips 3/8

functions/tips/index.js
 (https://github.com/GoogleCloudPlatform/nodejs-docs-samples/blob/master/functions/tips/index.js)

COM/GOOGLECLOUDPLATFORM/NODEJS-DOCS-SAMPLES/BLOB/MASTER/FUNCTIONS/TIPS/INDEX.JS)

FEEDBACK (#)

Minimize the number and size of dependencies to build a lean service.

Lazily load code that is infrequently used, if your language supports it.

Use code-loading optimizations such as PHP's composer autoloader optimization
 (https://getcomposer.org/doc/articles/autoloader-optimization.md).

Using global variables

In Cloud Run, you cannot assume that service state is preserved between requests. However,
Cloud Run does reuse individual container instances to serve ongoing tra�c, so you can
declare a variable in global scope to allow its value to be reused in subsequent invocations.
Whether any individual request receives the bene�t of this reuse cannot be known ahead of
time.

You can also cache objects in memory if they are expensive to recreate on each service request.
Moving this from the request logic to global scope results in better performance.

NODE.JS PYTHON GO JAVA

// Global (instance-wide) scope
// This computation runs at instance cold-start
const instanceVar = heavyComputation();

/**
 * HTTP function that declares a variable.
 *
 * @param {Object} req request context.
 * @param {Object} res response context.
 */
exports.scopeDemo = (req, res) => {
 // Per-function scope
 // This computation runs every time this function is called
 const functionVar = lightComputation();

 

https://github.com/GoogleCloudPlatform/nodejs-docs-samples/blob/master/functions/tips/index.js
https://github.com/GoogleCloudPlatform/nodejs-docs-samples/blob/master/functions/tips/index.js
https://getcomposer.org/doc/articles/autoloader-optimization.md

1/23/2020 Development tips | Cloud Run Documentation | Google Cloud

https://cloud.google.com/run/docs/tips 4/8

functions/tips/index.js
 (https://github.com/GoogleCloudPlatform/nodejs-docs-samples/blob/master/functions/tips/index.js)

COM/GOOGLECLOUDPLATFORM/NODEJS-DOCS-SAMPLES/BLOB/MASTER/FUNCTIONS/TIPS/INDEX.JS)

FEEDBACK (#)

Pe�orming lazy initialization of global variables

The initialization of global variables always occurs during startup, which increases cold start
time. Use lazy initialization for infrequently used objects to defer the time cost and decrease
cold start times.

Minimizing container image size

A larger container image size has several effects:

 res.send(`Per instance: ${instanceVar}, per function: ${functionVar}`);
};

NODE.JS PYTHON GO JAVA

// Always initialized (at cold-start)
const nonLazyGlobal = fileWideComputation();

// Declared at cold-start, but only initialized if/when the function executes
let lazyGlobal;

/**
 * HTTP function that uses lazy-initialized globals
 *
 * @param {Object} req request context.
 * @param {Object} res response context.
 */
exports.lazyGlobals = (req, res) => {
 // This value is initialized only if (and when) the function is called
 lazyGlobal = lazyGlobal || functionSpecificComputation();

 res.send(`Lazy global: ${lazyGlobal}, non-lazy global: ${nonLazyGlobal}`);
};

 

https://github.com/GoogleCloudPlatform/nodejs-docs-samples/blob/master/functions/tips/index.js
https://github.com/GoogleCloudPlatform/nodejs-docs-samples/blob/master/functions/tips/index.js

1/23/2020 Development tips | Cloud Run Documentation | Google Cloud

https://cloud.google.com/run/docs/tips 5/8

Increased security vulnerability because more code is a larger attack surface.

Slower build time for your container image while many �les are downloaded.

Slower deployment time for your service as the container image is prepared for use in a
new revision (https://cloud.google.com/run/docs/resource-model).

Increased network egress costs (https://cloud.google.com/container-registry/pricing) with
Container Registry if your container storage bucket is geographically distant from your
service region.

On Cloud Run, the size of your container image does not affect cold start or request processing
time and does not count towards the available memory
 (https://cloud.google.com/run/docs/con�guring/memory-limits) of your container.

See below for more on container security (#container-security).

To build a minimal container, consider working off a lean base image such as:

alpine (https://hub.docker.com/_/alpine)

distroless (https://github.com/GoogleContainerTools/distroless)

scratch (https://hub.docker.com/_/scratch)

Ubuntu (https://hub.docker.com/_/ubuntu) is larger in size, but is a commonly used base image
with a more complete out-of-box server environment.

If your service has a tool-heavy build process consider using multi-stage builds
 (https://docs.docker.com/develop/develop-images/multistage-build/#use-multi-stage-builds) to keep

your container light at run time.

These resources provide further information on creating lean container images:

Best Practices for Building Containers
 (https://cloud.google.com/solutions/best-practices-for-building-containers#build-the-smallest-image-
possible)

Kubernetes best practices: How and why to build small container images
 (https://cloud.google.com/blog/products/gcp/kubernetes-best-practices-how-and-why-to-build-
small-container-images)

7 best practices for building containers
 (https://cloud.google.com/blog/products/gcp/7-best-practices-for-building-containers)

https://cloud.google.com/run/docs/resource-model
https://cloud.google.com/container-registry/pricing
https://cloud.google.com/run/docs/configuring/memory-limits
https://hub.docker.com/_/alpine
https://github.com/GoogleContainerTools/distroless
https://hub.docker.com/_/scratch
https://hub.docker.com/_/ubuntu
https://docs.docker.com/develop/develop-images/multistage-build/#use-multi-stage-builds
https://cloud.google.com/solutions/best-practices-for-building-containers#build-the-smallest-image-possible
https://cloud.google.com/blog/products/gcp/kubernetes-best-practices-how-and-why-to-build-small-container-images
https://cloud.google.com/blog/products/gcp/7-best-practices-for-building-containers

1/23/2020 Development tips | Cloud Run Documentation | Google Cloud

https://cloud.google.com/run/docs/tips 6/8

Using concurrency

Cloud Run supports con�gurable concurrency
 (https://cloud.google.com/run/docs/about-concurrency) which has special considerations for your
service. This is different from Cloud Functions, which does not support concurrency.

Tuning concurrency for your service

You can enable a service's container instances to serve multiple requests simultaneously, that
is, "concurrently". The number of concurrent requests that each container instance can serve is
limited by the technology stack and the use of shared resources like global variables and
database connections.

To optimize your service for maximum stable concurrency:

1. Optimize your service performance.

2. Set your expected level of concurrency support in any code-level concurrency
con�guration. Not all technology stacks require such a setting.

3. Deploy your service.

4. Set Cloud Run concurrency for your service equal or less than any code-level
con�guration. If there is no code-level con�guration, use your expected concurrency.

5. Use load testing (https://en.wikipedia.org/wiki/Load_testing) tools that support a con�gurable
concurrency. You need to con�rm that your service remains stable under expected load
and concurrency.

6. If the service does poorly, go to step 1 to improve the service or step 2 to reduce the
concurrency. If the service does well, go back to step 2 and increase the concurrency.

Continue iterating until you �nd the maximum stable concurrency.

Matching memory to concurrency

Each request your service handles requires some amount of additional memory. So, when you
adjust concurrency up or down, make sure you adjust your memory limit as well.

Avoiding mutable global state

https://cloud.google.com/run/docs/about-concurrency
https://en.wikipedia.org/wiki/Load_testing

1/23/2020 Development tips | Cloud Run Documentation | Google Cloud

https://cloud.google.com/run/docs/tips 7/8

If you want to leverage mutable global state in a concurrent context, take extra steps in your
code to ensure this is done safely. Minimize contention by limiting global variables to one-time
initialization and reuse as described above under Performance (#performance).

If you use mutable global variables in a service that serves multiple requests at the same time,
make sure to use locks or mutexes to prevent race conditions.

Container security

Many general purpose software security practices apply to containerized applications. There
are some practices that are either speci�c to containers or that align with the philosophy and
architecture of containers.

To improve container security:

Use actively maintained and secure base images such as Container Registry's managed
base images (https://cloud.google.com/container-registry/docs/managed-base-images). or
Docker Hub's o�cial images
 (https://hub.docker.com/search?q=&type=image&image_�lter=o�cial)

Apply security updates to your services by regularly rebuilding container images and
redeploying your services.

Include in the container only what is necessary to run your service. Extra code, packages,
and tools are potential security vulnerabilities. See above for the related performance
impact (#mimimize-container).

Implement a deterministic build process (https://en.wikipedia.org/wiki/Reproducible_builds)

that includes speci�c software and library versions. This prevents unveri�ed code from
being included in your container.

Set your container to run as a user other than root with the Docker�le USER statement
 (https://docs.docker.com/engine/reference/builder/#user). Some container images may

already have a speci�c user con�gured.

Automated Security Scanning

Enable the Container Registry image vulnerability scanner
 (https://cloud.google.com/container-registry/docs/get-image-vulnerabilities) for security scanning of
container images stored in the Container Registry (https://cloud.google.com/container-registry).

https://cloud.google.com/container-registry/docs/managed-base-images
https://hub.docker.com/search?q=&type=image&image_filter=official
https://en.wikipedia.org/wiki/Reproducible_builds
https://docs.docker.com/engine/reference/builder/#user
https://cloud.google.com/container-registry/docs/get-image-vulnerabilities
https://cloud.google.com/container-registry

1/23/2020 Development tips | Cloud Run Documentation | Google Cloud

https://cloud.google.com/run/docs/tips 8/8

If using Cloud Run for Anthos on Google Cloud, you may further use Binary Authorization
 (https://cloud.google.com/binary-authorization/docs/quickstart) to ensure only secure container
images are deployed.

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License
 (https://creativecommons.org/licenses/by/4.0/), and code samples are licensed under the Apache 2.0 License
 (https://www.apache.org/licenses/LICENSE-2.0). For details, see our Site Policies
 (https://developers.google.com/terms/site-policies). Java is a registered trademark of Oracle and/or its a�liates.

Last updated November 14, 2019.

https://cloud.google.com/binary-authorization/docs/quickstart
https://creativecommons.org/licenses/by/4.0/
https://www.apache.org/licenses/LICENSE-2.0
https://developers.google.com/terms/site-policies

