
1/23/2020 Using system packages tutorial | Cloud Run Documentation | Google Cloud

https://cloud.google.com/run/docs/tutorials/system-packages 1/12

Serverless Computing

Cloud Run: Serverless Computing

Documentation Guides

This tutorial shows how to build a custom Cloud Run (https://cloud.google.com/run) service that
transforms a graph description input parameter into a diagram in the PNG image format. It
uses Graphviz (http://www.graphviz.org/) and is installed as a system package in the service's
container environment. Graphviz is used via command-line utilities to serve requests.

You can use this tutorial with Cloud Run (fully managed) or Cloud Run for Anthos on Google
Cloud.

Objectives

Write and build a custom container (https://www.docker.com/resources/what-container) with a
Docker�le (https://docs.docker.com/engine/reference/builder/)

Write, build, and deploy a Cloud Run service

Use Graphviz dot (http://www.graphviz.org/documentation/) utility to generate diagrams

Test the service by posting a DOT syntax diagram from the collection or your own
creation

Costs

This tutorial uses billable components of Cloud Platform, including:

Cloud Build (https://cloud.google.com/cloud-build/)

Container Registry (https://cloud.google.com/container-registry/)

Cloud Run or Cloud Run for Anthos on Google Cloud (https://cloud.google.com/run/)

Use the Pricing Calculator (https://cloud.google.com/products/calculator/) to generate a cost
estimate based on your projected usage.

New Cloud Platform users might be eligible for a free trial (https://cloud.google.com/free).

 (https://cloud.google.com/products/serverless/)

 (https://cloud.google.com/run/)

 (https://cloud.google.com/run/docs/)

Using system packages tutorial

https://cloud.google.com/products/serverless/
https://cloud.google.com/run/
https://cloud.google.com/run/docs/
https://cloud.google.com/run/docs/
https://cloud.google.com/run
http://www.graphviz.org/
https://www.docker.com/resources/what-container
https://docs.docker.com/engine/reference/builder/
http://www.graphviz.org/documentation/
https://cloud.google.com/cloud-build/
https://cloud.google.com/container-registry/
https://cloud.google.com/run/
https://cloud.google.com/products/calculator/
https://cloud.google.com/free

1/23/2020 Using system packages tutorial | Cloud Run Documentation | Google Cloud

https://cloud.google.com/run/docs/tutorials/system-packages 2/12

Before you begin

1. Sign in (https://accounts.google.com/Login) to your Google Account.

If you don't already have one, sign up for a new account
 (https://accounts.google.com/SignUp).

2. In the Cloud Console, on the project selector page, select or create a Google Cloud project.

Note: If you don't plan to keep the resources that you create in this procedure, create a project instead

of selecting an existing project. After you �nish these steps, you can delete the project, removing all

resources associated with the project.

GO TO THE PROJECT SELECTOR PAGE (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/PROJECTSELECT

3. Make sure that billing is enabled for your Google Cloud project. Learn how to con�rm
billing is enabled for your project (https://cloud.google.com/billing/docs/how-to/modify-project).

4.

ENABLE THE CLOUD RUN API (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/APIS/LIBRARY/RUN.GOOG

5. Install and initialize (https://cloud.google.com/sdk/docs/) the Cloud SDK.

6. For Cloud Run for Anthos on Google Cloud install the gcloud kubectl component:

7. Update components:

8. Install curl (https://curl.haxx.se/dlwiz/?type=bin) to try out the service

9. If you are using Cloud Run for Anthos on Google Cloud, create a new cluster using the
instructions in Setting up Cloud Run for Anthos on Google Cloud
 (https://cloud.google.com/run/docs/gke/setup).

Se�ing up gcloud defaults

To con�gure gcloud with defaults for your Cloud Run service:

gcloud components install kubectl

gcloud components update

https://accounts.google.com/Login
https://accounts.google.com/SignUp
https://console.cloud.google.com/projectselector2/home/dashboard
https://cloud.google.com/billing/docs/how-to/modify-project
https://console.cloud.google.com/apis/library/run.googleapis.com
https://cloud.google.com/sdk/docs/
https://curl.haxx.se/dlwiz/?type=bin
https://cloud.google.com/run/docs/gke/setup

1/23/2020 Using system packages tutorial | Cloud Run Documentation | Google Cloud

https://cloud.google.com/run/docs/tutorials/system-packages 3/12

1. Set your default project:

Replace PROJECT-ID with the name of the project you created for this tutorial.

2. If you are using Cloud Run (fully managed), con�gure gcloud for your chosen region:

Replace REGION with the supported Cloud Run region (#follow-cloud-run) of your choice.

3. If you are using Cloud Run for Anthos on Google Cloud, con�gure gcloud for your cluster:

Replace

CLUSTER-NAME with the name you used for your cluster,

REGION with the supported cluster location of your choice.

Retrieving the code sample

To retrieve the code sample for use:

1. Clone the sample app repository to your local machine:

Alternatively, you can download the sample
 (https://github.com/GoogleCloudPlatform/nodejs-docs-samples/archive/master.zip) as a zip �le
and extract it.

2. Change to the directory that contains the Cloud Run sample code:

gcloud config set project PROJECT-ID

gcloud config set run/region REGION

gcloud config set run/cluster CLUSTER-NAME
gcloud config set run/cluster_location REGION

NODE.JS PYTHON GO JAVA

git clone https://github.com/GoogleCloudPlatform/nodejs-docs-samples.git

NODE.JS PYTHON GO JAVA

https://github.com/GoogleCloudPlatform/nodejs-docs-samples/archive/master.zip

1/23/2020 Using system packages tutorial | Cloud Run Documentation | Google Cloud

https://cloud.google.com/run/docs/tutorials/system-packages 4/12

Visualizing the architecture

The basic architecture looks like this:

For the diagram source, see the DOT Description
 (https://cloud.google.com/run/docs/tutorials/resources/diagram-as-a-service.dot.txt)

The user makes an HTTP request to the Cloud Run service which executes a Graphviz utility to
transform the request into an image. That image is delivered to the user as the HTTP response.

Understanding the code

De�ning your environment con�guration with the Dockerfile

Key Point: Use your Dockerfile to customize your environment with libraries, utilities, environment

variables, con�guration �les, and startup processes. This is the container-based approach for "server

con�guration".

Your Dockerfile is speci�c to the language and base operating environment, such as Ubuntu,
that your service will use.

The Build and Deploy Quickstart (https://cloud.google.com/run/docs/quickstarts/build-and-deploy)

shows various Dockerfiles that can be used as a starting point to build a Dockerfile for other
services.

This service requires one or more additional system packages not available by default.

1. Open the Dockerfile in an editor.

2. Look for a Dockerfile RUN (https://docs.docker.com/engine/reference/builder/#run) statement.
This statement allows running arbitrary shell commands to modify the environment. If the

cd nodejs-docs-samples/run/system-package/

https://cloud.google.com/run/docs/tutorials/resources/diagram-as-a-service.dot.txt
https://cloud.google.com/run/docs/quickstarts/build-and-deploy
https://docs.docker.com/engine/reference/builder/#run

1/23/2020 Using system packages tutorial | Cloud Run Documentation | Google Cloud

https://cloud.google.com/run/docs/tutorials/system-packages 5/12

run/system_package/Docker�le
 (https://github.com/GoogleCloudPlatform/golang-
samples/blob/master/run/system_package/Docker�le)

/GOOGLECLOUDPLATFORM/GOLANG-SAMPLES/BLOB/MASTER/RUN/SYSTEM_PACKAGE/DOCKERFILE)

FEEDBACK (#)

Dockerfile has multiple stages, identi�ed by �nding multiple FROM statements, it will be
found in the last stage.

The speci�c packages required and the mechanism to install them varies by the operating
system declared inside the container.

To get instructions for your operating system or base image, click the appropriate tab.

To determine the operating system of your container image, check the name in the FROM
statement or a README associated with your base image. For example, if you extend
from node, you can �nd documentation and the parent Dockerfile on Docker Hub
 (http://hub.docker.com/_/node).

3. Test your customization by building the image, using docker build locally
 (https://cloud.google.com/run/docs/building/containers#building_locally_and_pushing_using_docker
)

or Cloud Build (#build-container).

Handling incoming requests

The sample service uses parameters from the incoming HTTP request to invoke a system call
that executes the appropriate dot utility command.

In the HTTP handler below, a graph description input parameter is extracted from the dot
querystring variable.

Graph descriptions can include characters which must be URL encoded
 (https://wikipedia.org/wiki/Query_string#URL_encoding) for use in a querystring.

DEBIAN/UBUNTU ALPINE

RUN apt-get update -y && apt-get install -y \
 graphviz \
 && apt-get clean

https://github.com/GoogleCloudPlatform/golang-samples/blob/master/run/system_package/Dockerfile
https://github.com/GoogleCloudPlatform/golang-samples/blob/master/run/system_package/Dockerfile
http://hub.docker.com/_/node
https://cloud.google.com/run/docs/building/containers#building_locally_and_pushing_using_docker
https://wikipedia.org/wiki/Query_string#URL_encoding

1/23/2020 Using system packages tutorial | Cloud Run Documentation | Google Cloud

https://cloud.google.com/run/docs/tutorials/system-packages 6/12

run/system-package/app.js
 (https://github.com/GoogleCloudPlatform/nodejs-docs-samples/blob/master/run/system-
package/app.js)

/GOOGLECLOUDPLATFORM/NODEJS-DOCS-SAMPLES/BLOB/MASTER/RUN/SYSTEM-PACKAGE/APP.JS)

FEEDBACK (#)

You'll need to differentiate between internal server errors and invalid user input. This sample
service returns an Internal Server Error for all dot command-line errors unless the error message
contains the string syntax, which indicates a user input problem.

Generating a diagram

The core logic of diagram generation uses the dot command-line tool to process the graph
description input parameter into a diagram in the PNG image format.

NODE.JS PYTHON GO JAVA

app.get('/diagram.png', (req, res) => {
 try {
 const image = createDiagram(req.query.dot);
 res.setHeader('Content-Type', 'image/png');
 res.setHeader('Content-Length', image.length);
 res.setHeader('Cache-Control', 'public, max-age=86400');
 res.send(image);
 } catch (err) {
 console.error(`error: ${err.message}`);
 const errDetails = (err.stderr || err.message).toString();
 if (errDetails.includes('syntax')) {
 res.status(400).send(`Bad Request: ${err.message}`);
 } else {
 res.status(500).send('Internal Server Error');
 }
 }
});

NODE.JS PYTHON GO JAVA

https://github.com/GoogleCloudPlatform/nodejs-docs-samples/blob/master/run/system-package/app.js
https://github.com/GoogleCloudPlatform/nodejs-docs-samples/blob/master/run/system-package/app.js

1/23/2020 Using system packages tutorial | Cloud Run Documentation | Google Cloud

https://cloud.google.com/run/docs/tutorials/system-packages 7/12

run/system-package/app.js
 (https://github.com/GoogleCloudPlatform/nodejs-docs-samples/blob/master/run/system-
package/app.js)

/GOOGLECLOUDPLATFORM/NODEJS-DOCS-SAMPLES/BLOB/MASTER/RUN/SYSTEM-PACKAGE/APP.JS)

FEEDBACK (#)

Designing a secure service

Any vulnerabilities in the dot tool are potential vulnerabilities of the web service. You can
mitigate this by using up-to-date versions of the graphviz package through re-building the
container image on a regular basis.

If you extend the current sample to accept user input as command-line parameters, you should
protect against command-injection attacks (https://wikipedia.org/wiki/Code_injection#Shell_injection)

. Some of the ways to prevent injection attacks include:

Mapping inputs to a dictionary of supported parameters

Validating inputs match a range of known-safe values, perhaps using regular expressions

// Generate a diagram based on a graphviz DOT diagram description.
const createDiagram = dot => {
 if (!dot) {
 throw new Error('syntax: no graphviz definition provided');
 }

 // Adds a watermark to the dot graphic.
 const dotFlags = [
 '-Glabel="Made on Cloud Run"',
 '-Gfontsize=10',
 '-Glabeljust=right',
 '-Glabelloc=bottom',
 '-Gfontcolor=gray',
].join(' ');

 const image = execSync(`/usr/bin/dot ${dotFlags} -Tpng`, {
 input: dot,
 });
 return image;
};

https://github.com/GoogleCloudPlatform/nodejs-docs-samples/blob/master/run/system-package/app.js
https://github.com/GoogleCloudPlatform/nodejs-docs-samples/blob/master/run/system-package/app.js
https://wikipedia.org/wiki/Code_injection#Shell_injection

1/23/2020 Using system packages tutorial | Cloud Run Documentation | Google Cloud

https://cloud.google.com/run/docs/tutorials/system-packages 8/12

Escaping inputs to ensure shell syntax is not evaluated

Shipping the code

To ship your code, you build with Cloud Build, and upload to Container Registry, and deploy to
Cloud Run or Cloud Run for Anthos on Google Cloud:

1. Run the following command to build your container and publish on Container Registry.

Where PROJECT-ID is your GCP project ID, and graphviz is the name you want to give
your service.

Upon success, you will see a SUCCESS message containing the ID, creation time, and
image name. The image is stored in Container Registry and can be re-used if desired.

2. Deploy using the following command:

Where PROJECT-ID is your GCP project ID, and graphviz is the name of the container
from above and graphviz-web is the name of the service.

If deploying to Cloud Run, answer Y to the "allow unauthenticated" prompt. See Managing
Access (https://cloud.google.com/run/docs/securing/managing-access) for more details on IAM-
based authentication.

Wait until the deployment is complete: this can take about half a minute. On success, the
command line displays the service URL.

3. If you want to deploy a code update to the service, repeat the previous steps. Each
deployment to a service creates a new revision and automatically starts serving tra�c
when ready.

Try it out

Try out your service by sending HTTP POST requests with DOT syntax descriptions in the
request payload.

gcloud builds submit --tag gcr.io/PROJECT-ID/graphviz

gcloud run deploy graphviz-web --image gcr.io/PROJECT-ID/graphviz

https://cloud.google.com/run/docs/securing/managing-access

1/23/2020 Using system packages tutorial | Cloud Run Documentation | Google Cloud

https://cloud.google.com/run/docs/tutorials/system-packages 9/12

1. Send an HTTP request to your service.

Copy the URL into your browser URL bar and update [SERVICE_DOMAIN]:

You can embed the diagram in a web page:

Services deployed on Cloud Run for Anthos on Google Cloud without a custom domain
 (https://cloud.google.com/run/docs/gke/custom-domains) will need to modify this command.

a. If you do not already have it, determine the ingress gateway of your cluster.

b. Run a curl command using this GATEWAY_IP address in the URL.

2. Open the resulting diagram.png �le in any application that supports PNG �les, such as
Chrome.

It should look like this:

Source: DOT Description
 (https://github.com/GoogleCloudPlatform/golang-
samples/blob/master/run/system_package/library/hello-cloud-run.dot)

You can explore a small collection of ready-made diagram descriptions
 (https://github.com/GoogleCloudPlatform/golang-samples/tree/master/run/system_package/library).

1. Copy the contents of the selected .dot �le

https://SERVICE_DOMAIN/diagram.png?dot=digraph Run { rankdir=LR Code -> Build -

<img src="https://SERVICE_DOMAIN/diagram.png?dot=digraph Run { rankdir=LR Code

export GATEWAY_IP="$(kubectl get svc istio-ingressgateway \
 --namespace istio-system \
 --output 'jsonpath={.status.loadBalancer.ingress[0].ip}')"

curl -G -H "Host: SERVICE_DOMAIN" https://$GATEWAY_IP/diagram.png \
 --data-urlencode "dot=digraph Run { rankdir=LR Code -> Build -> Deploy
 > diagram.png

https://cloud.google.com/run/docs/gke/custom-domains
https://github.com/GoogleCloudPlatform/golang-samples/blob/master/run/system_package/library/hello-cloud-run.dot
https://github.com/GoogleCloudPlatform/golang-samples/tree/master/run/system_package/library

1/23/2020 Using system packages tutorial | Cloud Run Documentation | Google Cloud

https://cloud.google.com/run/docs/tutorials/system-packages 10/12

2. Paste it into a curl command similar to the above:

Cleaning up

If you created a new project for this tutorial, delete the project (#delete-project). If you used an
existing project and wish to keep it without the changes added in this tutorial, delete resources
created for the tutorial (#delete-resources).

Deleting the project

The easiest way to eliminate billing is to delete the project that you created for the tutorial.

To delete the project:

Caution: Deleting a project has the following effects:

Everything in the project is deleted. If you used an existing project for this tutorial, when you

delete it, you also delete any other work you've done in the project.

Custom project IDs are lost. When you created this project, you might have created a custom

project ID that you want to use in the future. To preserve the URLs that use the project ID, such

as an appspot.com URL, delete selected resources inside the project instead of deleting the

whole project.

If you plan to explore multiple tutorials and quickstarts, reusing projects can help you avoid exceeding

project quota limits.

1. In the Cloud Console, go to the Manage resources page.

GO TO THE MANAGE RESOURCES PAGE (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/IAM-ADMIN/PRO

2. In the project list, select the project you want to delete and click Delete .

3. In the dialog, type the project ID, and then click Shut down to delete the project.

Deleting tutorial resources

https://SERVICE_DOMAIN/diagram.png?dot=SELECTED DOTFILE CONTENTS

https://console.cloud.google.com/iam-admin/projects

1/23/2020 Using system packages tutorial | Cloud Run Documentation | Google Cloud

https://cloud.google.com/run/docs/tutorials/system-packages 11/12

1. Delete the Cloud Run service you deployed in this tutorial:

Where SERVICE-NAME is your chosen service name.

You can also delete Cloud Run services from the Google Cloud Console
 (https://console.cloud.google.com/run).

2. Remove the gcloud default con�gurations you added during tutorial setup.

If you use Cloud Run (fully managed), remove the region setting:

If you use Cloud Run for Anthos on Google Cloud, remove the cluster con�guration:

3. Remove the project con�guration:

4. Delete other Google Cloud resources created in this tutorial:

Delete the container image
 (https://cloud.google.com/container-registry/docs/managing#deleting_images) named
gcr.io/<var>PROJECT-ID</var>/graphviz from Container Registry.

What's next

Experiment with your graphviz app:

Add support for other graphviz utilities which apply different algorithms to diagram
generation.

Save diagrams to Cloud Storage (https://cloud.google.com/storage). Do you want to
save the image or the DOT syntax?

Implement content abuse protection with Cloud Natural Language API
 (https://cloud.google.com/natural-language/).

gcloud run services delete SERVICE-NAME

 gcloud config unset run/region

 gcloud config unset run/cluster run/cluster
 gcloud config unset run/cluster run/cluster_location

 gcloud config unset project

https://console.cloud.google.com/run
https://cloud.google.com/container-registry/docs/managing#deleting_images
https://cloud.google.com/storage
https://cloud.google.com/natural-language/

1/23/2020 Using system packages tutorial | Cloud Run Documentation | Google Cloud

https://cloud.google.com/run/docs/tutorials/system-packages 12/12

See another example of a system package in the Image Processing with Cloud Run
tutorial (https://cloud.google.com/run/docs/tutorials/image-processing).

Try out other Google Cloud Platform features for yourself. Have a look at our tutorials
 (https://cloud.google.com/docs/tutorials).

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License
 (https://creativecommons.org/licenses/by/4.0/), and code samples are licensed under the Apache 2.0 License
 (https://www.apache.org/licenses/LICENSE-2.0). For details, see our Site Policies
 (https://developers.google.com/terms/site-policies). Java is a registered trademark of Oracle and/or its a�liates.

Last updated December 10, 2019.

https://cloud.google.com/run/docs/tutorials/image-processing
https://cloud.google.com/docs/tutorials
https://creativecommons.org/licenses/by/4.0/
https://www.apache.org/licenses/LICENSE-2.0
https://developers.google.com/terms/site-policies

