
1/23/2020 BeyondProd: A new approach to cloud-native security  |  Documentation  |  Google Cloud

https://cloud.google.com/security/beyondprod/ 1/17

Google has written several whitepapers explaining projects developed internally that help
improve security. BeyondProd purposefully calls back to the concepts of BeyondCorp�just as
a perimeter security model no longer works for end users, it also no longer works for
microservices. Adapting the original BeyondCorp (http://cloud.google.com/beyondcorp) paper,
"Key assumptions of this model no longer hold: The perimeter is no longer just the physical
location of the enterprise [data center], and what lies inside the perimeter is no longer a
blessed and safe place to host personal computing devices and enterprise applications
[microservices]."

In this whitepaper, we provide details on how several pieces of Google’s infrastructure work
together to protect workloads�in an architecture that is now known as "cloud-native". For an
overview of Google’s security, see the Security Infrastructure Design whitepaper
 (https://cloud.google.com/security/infrastructure/design/).

The content contained herein is correct as of December 2019. This whitepaper represents the
status quo as of the time it was written. Google Cloud’s security policies and systems may
change going forward, as we continually improve protection for our users.

Glossary

The following de�nitions are used in this document:

A microservice separates the individual tasks an application needs to perform into
separate services, each of which can be developed and managed independently, with their
own API, rollout, scaling and quota management. In a more modern architecture, an
application, such as a website, can be run as a collection of microservices instead of as a
single monolithic service. Microservices are independent, modular, dynamic, and
ephemeral. They can be distributed across many hosts, clusters, or even clouds.

A workload is a unique task that an application completes. In a microservice architecture,
a workload may be one or multiple microservices.

A job is a single instance of a microservice, running some part of an application.

BeyondProd: A new approach to cloud-native
security

http://cloud.google.com/beyondcorp
https://cloud.google.com/security/infrastructure/design/


1/23/2020 BeyondProd: A new approach to cloud-native security  |  Documentation  |  Google Cloud

https://cloud.google.com/security/beyondprod/ 2/17

A microservice uses a service identity to authenticate itself to other services running in
the infrastructure.

A service mesh is an infrastructure layer for service-to-service communication, which can
control tra�c, apply policies, and provide centralized monitoring for service calls. When
using a microservice architecture, this removes the burden on individual services to
implement these controls, and allows for simpler, centralized management across many
microservices.

CIO-level summary

Google’s infrastructure deploys workloads as individual microservices in containers, and
manages these workloads using Borg�our container orchestration system. This is an
inspiration and template for what’s widely known today as a "cloud-native" architecture.

Google’s infrastructure has been purposefully designed with security in mind; not added
later as an afterthought. Our infrastructure assumes no trust between its services.

Google protects its microservices with an initiative called BeyondProd. This protection
includes how code is changed and how user data in microservices is accessed.
BeyondProd applies concepts like: mutually authenticated service endpoints, transport
security, edge termination with global load balancing and denial of service protection,
end-to-end code provenance, and runtime sandboxing.

Moving from a traditional security model to a cloud-native security model required us to
make changes to two main areas, namely our infrastructure and our development
process. Building shared components into a shared fabric enveloping and connecting all
microservices, also known as a service mesh, made it easier to roll out changes and
achieve consistent security across services.

Motivation

Google moved to containers and container orchestration to achieve higher resource utilization,
build highly-available applications, and simplify work for Google developers. We had another
motivation to move to a containerized infrastructure�to align our security controls with our
architecture. It had become clear to us that a perimeter-based security model wasn't secure
enough. If an attacker were to breach the perimeter, they would have free movement within the
network. While we realized we needed stronger security controls throughout our infrastructure,



1/23/2020 BeyondProd: A new approach to cloud-native security  |  Documentation  |  Google Cloud

https://cloud.google.com/security/beyondprod/ 3/17

we also wanted to make it easy for Google developers to write and deploy secure applications
without having to implement security features themselves.

Moving from monolithic applications to distributed microservices deployed from containers
using an orchestration system had tangible operational bene�ts: simpler management and
scalability. This cloud-native architecture required a different security model with different tools
to protect deployments aligned with the management and scalability bene�ts of microservices.

This document describes how cloud-native security is implemented at Google, termed here as
BeyondProd: what the change to cloud-native means for security, security principles for cloud-
native security, systems built to address these requirements, and some guidance on how to
tackle a similar change yourself.

Cloud-native security at Google

Containerized microservices

From its earliest days, Google made a conscious decision to build its data center capacity from
low cost commodity servers, rather than invest in more expensive highly-available hardware.
The guiding philosophy for our reliability was, and continues to be, that any individual part of a
system should be able to fail without affecting the availability of user visible services.
Achieving this availability required running redundant instances of services so that single
failures would not lead to outages. A result of this philosophy was the development of
containers, microservices, and container orchestration to scalably manage deployment of these
highly redundant and distributed systems.

A containerized infrastructure means that each workload is deployed as its own set of
immutable, moveable, scheduleable containers. To manage these containers internally, we
developed a container orchestration system called Borg
 (https://research.google.com/pubs/pub43438.html?hl=es) , which we still use today to
deploy several billion containers a week.

Containers made workloads easier to bin pack and reschedule across machines. Microservices
made it easier to develop and debug different parts of an application. Used in combination,
microservices and containers enable workloads to be split into smaller, more manageable units
for maintenance and discovery. Moving to a containerized infrastructure with a microservice
architecture is known as going "cloud-native
 (https://github.com/cncf/toc/blob/master/DEFINITION.md)". Services are run inside containers

1 (#footnote-1)

https://research.google.com/pubs/pub43438.html?hl=es
https://github.com/cncf/toc/blob/master/DEFINITION.md


1/23/2020 BeyondProd: A new approach to cloud-native security  |  Documentation  |  Google Cloud

https://cloud.google.com/security/beyondprod/ 4/17

deployed by Borg. This architecture scales workloads as needed�if there is high demand for a
particular workload, there may be multiple machines running copies of the same service to
handle the required scale of the workload.

Where Google stands out is that we have taken security into account as part of every evolution
in our architecture. The more recent concept of cloud-native security is comparable to what
Google has used for many years to secure our infrastructure. Our goal with this microservice
architecture and development process is to address security issues as early in the development
and deployment lifecycle as possible�when addressing issues is less costly�and do so in a
way that is standardized and consistent. The end result is that developers spend less time on
security while still achieving more secure outcomes.

Migrating to a cloud-native architecture

Modern security architectures have moved beyond a traditional perimeter-based security model
where a wall protects the perimeter and any users or services on the inside are fully trusted.
BeyondCorp was a response to a change in the way the modern corporate user works. Today,
users are mobile and commonly operate outside an organization's traditional security perimeter
such as from a coffee shop, from an airplane, or anywhere in between. In BeyondCorp, we
dispensed with the idea of a privileged corporate network and authorized access based solely
on device and user credentials and attributes regardless of a user’s network location.

Cloud-native security addresses the same concern for services as it does for users�that in a
cloud-native world, we can't simply rely on a �rewall to protect the production network, just as
we can’t rely on a �rewall to protect the corporate network. In the same way that users aren't all
using the same physical location or device, developers are not all deploying code to the same
environment. With BeyondProd, microservices may be running not only within a �rewalled data
center, but in public clouds, private clouds, or third-party hosted services, and they need to be
secure everywhere.

Just like users move, use different devices, and connect from different locations; microservices
also move and are deployed in different environments, across heterogeneous hosts. Where
BeyondCorp states that "user trust should be dependent on characteristics like the context-
aware state of devices and not the ability to connect to the corp network", BeyondProd states
that "service trust should be dependent on characteristics like code provenance and service
identity, not the location in the production network, such as IP or hostname identity".

Cloud-native and application development



1/23/2020 BeyondProd: A new approach to cloud-native security  |  Documentation  |  Google Cloud

https://cloud.google.com/security/beyondprod/ 5/17

A more traditional security model, focused on perimeter-based security, can’t singularly protect
a cloud-native architecture. Consider this example, a monolithic application using a three-tier
architecture is deployed to a private corporate data center which has enough capacity to handle
peak load for critical events. Applications with speci�c hardware or network requirements are
purposefully deployed onto speci�c machines which typically maintain �xed IP addresses.
Rollouts are infrequent, large, and hard to coordinate as the resulting changes simultaneously
affect many parts of the application. This leads to very long-lived applications that are updated
less frequently and where security patches are typically less frequently applied.

However, in a cloud-native model, containers decouple the binaries needed by your application
from the underlying host operating system, and make applications more portable. Containers
are meant to be used immutably, meaning they don't change once they're deployed─so they
are rebuilt and redeployed frequently. Jobs are scaled to handle load, with new jobs deployed
when the load increases, and existing jobs killed when the load diminishes. With containers
being restarted, killed, or rescheduled often, there is more frequent reuse and sharing of
hardware and networking. With a common standardized build and distribution process, the
development process is more consistent and uniform between teams, even though teams
independently manage the development of their microservices. As a result, security
considerations (e.g. security reviews, code scanning, and vulnerability management), can take
place earlier in the development cycle.

Implications for security

We’ve talked a lot about how the model of an untrusted interior, with users in BeyondCorp, can
also apply to microservices in BeyondProd─but what does that change look like? Table 1
provides a comparison between aspects of traditional infrastructure security and their
counterpoints in a cloud native architecture. The table also shows the requirements needed to
move from one to the other. The remainder of this section provides more details on each row of
the table.

Traditional infrastructure
security

Cloud native security
Implied requirements for
cloud-native security

Perimeter-based security (i.e.
�rewall), with internal
communications considered trusted.

Zero-trust security with service-to-
service communication veri�ed, and
no implicit trust for services in the
environment.

Protection of the network at the
edge (remains applicable) and
no inherent mutual trust
between services.

Fixed IPs and hardware for certain Greater resource utilization, reuse, andTrusted machines running code



1/23/2020 BeyondProd: A new approach to cloud-native security  |  Documentation  |  Google Cloud

https://cloud.google.com/security/beyondprod/ 6/17

applications. sharing, including of IPs and
hardware.

with known provenance.

IP address-based identity. Service based identity.

Services run in a known, expected
location.

Services can run anywhere in the
environment, including hybrid
deployments across the public cloud
and private data centers.

Security-speci�c requirements built
into each application and enforced
separately.

Shared security requirements
integrated into service stacks
following a centralized enforcement
policy.

Choke points for consistent
policy enforcement across
services.

Limited restrictions on how services
are built and reviewed.

Security requirements applied
consistently to all services.

Limited oversight of security
components.

Centralized view of security policies
and adherence to policies.

Specialized and infrequent rollouts. Standardized build and rollout process
with more frequent changes to
individual microservices.

Simple, automated and
standardized change rollout.

Workloads are typically deployed as
VMs or to physical hosts and use
physical machine or hypervisor to
provide isolation.

Bin-packed workloads and their
processes run in a shared operating
system, requiring a mechanism to
isolate workloads.

Isolation between workloads
sharing an operating system.

Table 1: Implied requirements for security in moving to a cloud-native architecture

From perimeter-based security to zero-trust security

In a traditional security model, an organization’s applications could depend on an external
�rewall around its private data center to protect against incoming tra�c. In a cloud-native
environment, although the network perimeter still needs to be protected just as in the
BeyondCorp model, a perimeter-based security model is no longer enough. This doesn't
introduce a new security problem, but rather recognizes the reality that if a �rewall can't fully
protect the corporate network, it can't fully protect the production network. With a zero-trust
security model, you can no longer implicitly trust internal tra�c─it requires other security
controls, like authentication and encryption. At the same time, the shift towards microservices
provides an opportunity to re-think the traditional security model. As you remove your



1/23/2020 BeyondProd: A new approach to cloud-native security  |  Documentation  |  Google Cloud

https://cloud.google.com/security/beyondprod/ 7/17

dependence on a single network perimeter (for example, a �rewall), you can further segment the
network by service. To take this idea one step further, you could implement microservice-level
segmentation, with no inherent trust between services. With microservices, tra�c can have
varying levels of trust with different controls─you are no longer comparing just internal versus
external tra�c.

From �xed IPs and hardware to greater shared resources

In a traditional security model, an organization’s applications were deployed to speci�c
machines, and the IP addresses of those machines changed infrequently. This meant that
security tools could rely on a relatively static architecture map that linked applications in a
predictable way─security policies in tools like �rewalls could use IP addresses as identi�ers.

However, in the cloud-native world, with shared hosts and frequently changing jobs, using a
�rewall to control access between microservices doesn’t work. You can't rely on the fact that a
speci�c IP address is tied to a particular service. As a result, instead of basing identity on an IP
address or hostname, you base it on a service.

From application-speci�c security implementations to shared security requirements integrated into

service stacks

In a traditional security model, individual applications were each responsible for meeting their
own security requirements independently of other services. Such requirements included identity
management, SSL/TLS termination, and data access management. This often led to
inconsistent implementations or unaddressed security issues as these issues had to be �xed in
many places, making �xes harder to apply.

In the cloud-native world, components are much more frequently re-used between services and
there are choke points that allow for policies to be consistently enforced across services.
Different policies can be enforced using different security services. Rather than requiring every
application to implement critical security services separately, you can split out the various
policies into separate microservices (for example, one policy to ensure authorized access to
user data, and another to ensure the use of up-to-date TLS cipher suites).

From specialized and infrequent rollout processes to standardized processes with more frequent rollouts

In a traditional security model, there were limited shared services. Code that is more distributed,
coupled with local development, meant that it was di�cult to ascertain the impact of a change



1/23/2020 BeyondProd: A new approach to cloud-native security  |  Documentation  |  Google Cloud

https://cloud.google.com/security/beyondprod/ 8/17

which affected many parts of an application─as a result, rollouts were infrequent and di�cult
to coordinate. To make a change, developers might have to update each component directly
(for example, SSHing into a virtual machine to update a con�guration). Overall, this led to
extremely long-lived applications. From a security perspective, as code was more distributed, it
was more di�cult to review, and even more challenging to ensure that when a vulnerability was
�xed, it was �xed everywhere. Moving to cloud-native where rollouts are frequent and
standardized enables security to shift left"  in the software development lifecycle.
This enables simpler and more consistent enforcement of security hygiene, including regular
application of security patches.

From workloads isolated using physical machines or hypervisors to bin-packed workloads running on the

same machine requiring stronger isolation

In a traditional security model, workloads were scheduled on their own instances, with no
shared resources. An application was effectively delimited by its machine and network
boundary, and workload isolation was enforced solely by relying on physical host separation,
hypervisors, and traditional �rewalls.

In a cloud-native world, workloads are containerized and bin-packed onto shared hosts, and
shared resources. As a result, you need to have stronger isolation between your workloads.
Workloads can be separated into microservices which are isolated from one another in part
using network controls and sandboxing technologies.

Security principles

In developing a cloud-native architecture, we wanted to concurrently strengthen our
security─and so we developed and optimized for the following security principles:

Protection of network at the edge, so that workloads are isolated from network attacks
and unauthorized tra�c from the Internet. Although a wall-based approach is not a
concept new to cloud-native, it remains a security best practice. In a cloud-native world, a
perimeter approach is used to protect as much infrastructure as possible against
unauthorized tra�c and potential attacks from the Internet, for example, volume-based
Denial of Service attacks.

No inherent mutual trust between services, so that only known, trusted, and speci�cally
authorized callers can utilize a service. This stops attackers from using untrusted code to
access a service. If a service does get compromised, it prevents the attacker from

2 (#footnote-2)



1/23/2020 BeyondProd: A new approach to cloud-native security  |  Documentation  |  Google Cloud

https://cloud.google.com/security/beyondprod/ 9/17

performing actions that allow them to expand their reach. This mutual distrust helps to
limit the blast radius of a compromise.

Trusted machines running code with known provenance, so that service identities are
constrained to use only authorized code and con�gurations, and run only in authorized,
veri�ed environments.

Choke points for consistent policy enforcement across services. For example, a choke
point to verify requests for access to user data, such that a service’s access is derived
from a validated request from an authorized end user, and an administrator’s access
requires business justi�cation.

Simple, automated, and standardized change rollout, so that infrastructure changes can
be easily reviewed for their impact on security, and security patches can be rolled out with
little impact on production.

Isolation between workloads sharing an operating system, so that if a service is
compromised, it can’t affect the security of another workload running on the same host.
This limits the "blast radius" of a potential compromise.

Across our entire infrastructure, our goal is to have automated security that doesn’t depend on
individuals. Security should scale in the same way that services scale. Services should be
secure by default and insecure by exception─ human actions should be by exception, not
routine, and auditable when they occur. We can then authenticate a service based on the code
and con�guration deployed for the service, instead of the people who deployed the service.

Taken together, the implementation of these security principles mean that containers and the
microservices running inside can be deployed, communicate with each other, and run next to
each other without weakening the properties of a cloud-native architecture (i.e. simple workload
management, no-ops scaling, and effective bin-packing). All of this can be achieved without
burdening individual microservice developers with the security and implementation details of
the underlying infrastructure.

Google’s internal security services

To protect Google’s cloud-native infrastructure, we designed and developed several internal
tools and services. The security services listed below work together to address the security
principles de�ned in the Security Principles (#security-principles) section:

Google Front End (GFE)
 (https://cloud.google.com/security/encryption-in-transit/#user_to_google_front_end_encryption):

https://cloud.google.com/security/encryption-in-transit/#user_to_google_front_end_encryption


1/23/2020 BeyondProd: A new approach to cloud-native security  |  Documentation  |  Google Cloud

https://cloud.google.com/security/beyondprod/ 10/17

Terminates the connection from the end user, and provides a central point for enforcing
TLS best practices. Even though our emphasis is no longer on perimeter-based security,
the GFE is still an important part of our strategy for protecting internal services against
denial of service attacks. GFE is the �rst point of entry for a user connection to Google;
once within our infrastructure, the GFE is also responsible for load balancing and
rerouting tra�c between regions as needed. In our infrastructure, GFE is the edge proxy
that routes tra�c to the right microservice.

Application Layer Transport Security (ALTS)
 (https://cloud.google.com/security/encryption-in-transit/application-layer-transport-security/): Used
for RPC authentication, integrity, and encryption. ALTS is a mutual authentication and
transport encryption system for services in Google’s infrastructure. Identities are in general
bound to services instead of to a speci�c server name or host. This facilitates seamless
microservice replication, load balancing, and rescheduling across hosts.

Binary Authorization for Borg and Host Integrity are used for microservice and machine
integrity veri�cation, respectively:

Binary Authorization for Borg (BAB)
 (https://cloud.google.com/security/binary-authorization-for-borg): A deploy-time
enforcement check that ensures that code meets internal security requirements
before it is deployed. BAB checks include changes getting reviewed by a second
engineer, code being submitted to our source code repository, and binaries being
veri�ably built on dedicated infrastructure. In our infrastructure, BAB restricts the
deployment of unauthorized microservices.

Host Integrity (HINT): Veri�es the integrity of the host system software through a
secure boot process and is backed by secure microcontroller hardware where
supported. HINT checks include the veri�cation of digital signatures on the BIOS,
BMC, bootloader and OS kernel.

Service Access Policy and End user context tickets are used to restrict access to data:

Service Access Policy
 (https://cloud.google.com/security/infrastructure/design/#inter-service_access_management)

: Limits how data is accessed between services. When an RPC is sent from one
service to another, the Service Access Policy de�nes the authentication,
authorization, and auditing policies required to access the receiving service’s data.
This limits how data is accessed, grants the minimal level of access needed, and
speci�es how that access can be audited. In Google’s infrastructure, the Service

https://cloud.google.com/security/encryption-in-transit/application-layer-transport-security/
https://cloud.google.com/security/binary-authorization-for-borg
https://cloud.google.com/security/infrastructure/design/#inter-service_access_management


1/23/2020 BeyondProd: A new approach to cloud-native security  |  Documentation  |  Google Cloud

https://cloud.google.com/security/beyondprod/ 11/17

Access Policy limits one microservice’s access to another microservice’s data, and
allows for global analyses of access controls.

End user context (EUC) tickets
 (https://cloud.google.com/security/infrastructure/design/#access_management_of_end_user
_data)

: These tickets are issued by an End User Authentication service, and provide
services with a user identity, separate from their service identity. These are integrity-
protected, centrally-issued, forwardable credentials that attest to the identity of an
end user who made a request of the service. This reduces the need for trust between
services, as peer identity via ALTS is often insu�cient to grant access, with such
authorization decisions typically also based on the end user's identity.

Borg tooling for blue/green deployments : This tooling is responsible for
migrating running workloads when performing maintenance tasks. A new Borg job is
deployed in addition to the existing Borg job, and a load balancer gradually moves tra�c
from one to the other. This allows a microservice to be updated with no downtime and
without the user noticing. This tooling is used to apply service upgrades when we add
new features, as well as to apply critical security updates with no downtime (for example,
Heartbleed and Spectre/Meltdown
 (https://cloud.google.com/blog/topics/inside-google-cloud/answering-your-questions-about-
meltdown-and-spectre)

). For changes affecting Google Cloud infrastructure, we use live migration
 (https://cloud.google.com/compute/docs/instances/live-migration) to ensure VM workloads are
not impacted.

gVisor (https://gvisor.dev/), for workload isolation. gVisor uses a user space kernel to
intercept and handle syscalls, reducing the interaction with the host and the potential
attack surface. This kernel provides most of the functionality required to run an
application, and limits the host kernel surface that is accessible to the application. In
Google’s infrastructure, gVisor is one of several important tools used to isolate both
internal and Google Cloud customer workloads running on the same host from each
other.

Table 2 maps each principle we described in the Security Principles section to a corresponding
tool we use at Google to implement that principle.

Security principle Google’s internal security tool/service

Protection of network at the edge Google Front End (GFE), for managing TLS termination and policies
for incoming tra�c

3 (#footnote-3)

https://cloud.google.com/security/infrastructure/design/#access_management_of_end_user_data
https://cloud.google.com/blog/topics/inside-google-cloud/answering-your-questions-about-meltdown-and-spectre
https://cloud.google.com/compute/docs/instances/live-migration
https://gvisor.dev/


1/23/2020 BeyondProd: A new approach to cloud-native security  |  Documentation  |  Google Cloud

https://cloud.google.com/security/beyondprod/ 12/17

No inherent mutual trust between
services

Application Layer Transport Security (ALTS), for RPC authentication,
integrity, encryption, and service identities

Trusted machines running code with
known provenance

Binary Authorization for Borg (BAB), for code provenance veri�cation

Host Integrity (HINT), for machine integrity veri�cation

Choke points for consistent policy
enforcement across services

Service Access Policy, for limiting how data is accessed between
services

End user context (EUC) tickets, for attesting the identity of the
original requester

Simple, automated, and standardized
change rollout

Borg tooling, for blue/green deployments

Isolation between workloads sharing
an operating system

gVisor, for workload isolation

Table 2: Principles and security tools for implementing cloud-native security at Google

Pu�ing it all together

In this section we describe how the components we have discussed so far �t together to serve
user requests in a cloud-native world. We use two examples: �rst, we trace a typical user data
request from its creation to delivery at its destination and, second, we trace a code change from
development to production. Not all of the technologies listed here are used in all parts of
Google’s infrastructure�it depends on the services and workloads.

Accessing user data

As shown in Figure 1, when the GFE receives a user’s request (step 1), it terminates the TLS
connection and forwards the request to the appropriate service’s frontend over ALTS

 (step 2). The application frontend authenticates the user’s request using a central
End User Authentication (EUA) Service and, if successful, receives a short lived cryptographic
end user context ticket (EUC) (step 3).

4

 (#footnote-4)



1/23/2020 BeyondProd: A new approach to cloud-native security  |  Documentation  |  Google Cloud

https://cloud.google.com/security/beyondprod/ 13/17

Figure 1: Google’s cloud-native architecture security controls�accessing user data

The application frontend then makes an RPC over ALTS to a storage backend service,
forwarding the EUC ticket in the backend request (step 4). The backend service uses Service
Access Policy to ensure that:

1. the frontend service’s ALTS identity is authorized to make requests to the backend service
and present an EUC ticket,

2. the frontend’s identity is protected by our Binary Authorization for Borg (BAB), and

3. the EUC ticket is valid.

The backend service then checks that the user in the EUC ticket is authorized to access the
requested data. If any of these checks fail, the request is denied. In many cases, there is a chain
of backend calls and every intermediary service does a Service Access Policy check on inbound
RPCs, and the EUC ticket is forwarded on outbound RPCs. If these checks pass, then the data is
returned to the authorized application frontend, and served to the authorized user.

Each machine has an ALTS credential that is provisioned via the HINT system, and can only be
decrypted if HINT has veri�ed that the machine boot was successful. Most Google services run
as microservices on top of Borg, and these microservices each have their own ALTS identity.
Borgmaster  grants these ALTS microservice credentials to workloads based on
the microservice’s identity, as described in Figure 1. The machine-level ALTS credentials form
the secure channel for provisioning microservice credentials, so that only machines that have
successfully passed HINT veri�ed boot can actually host microservice workloads.

Making a code change

5 (#footnote-5)



1/23/2020 BeyondProd: A new approach to cloud-native security  |  Documentation  |  Google Cloud

https://cloud.google.com/security/beyondprod/ 14/17

As shown in Figure 2, when a Googler makes a change to a microservice protected by a suitably
strong BAB, the change must be submitted to our central code repository which enforces a code
review. Once approved, the change is submitted to the central, trusted build system which
produces a package with a signed veri�able build manifest certi�cate (step 1). At deployment
time, BAB veri�es this process was followed by validating the signed certi�cate from the build
pipeline (step 2).

Figure 2: Google’s cloud-native architecture security controls�making a code change

All workload updates are handled through blue/green deployments, whether it’s a routine rollout
or emergency security patch (step 3). GFE load balances tra�c over to the new deployment to
ensure continuity of operations.

All workloads require isolation. If the workload is less trusted, for example, the workload is
multi-tenant or the source code originates from outside of Google, it may be deployed into a
gVisor-protected environment, or use other layers of isolation. This isolation ensures that if one
instance of the application is compromised, none of the other instances are affected.

Applying BeyondProd

Going all in

By going cloud-native, and appropriately securing that infrastructure, Google can offer very
strong security properties for its internal and external (Google Cloud) workloads.



1/23/2020 BeyondProd: A new approach to cloud-native security  |  Documentation  |  Google Cloud

https://cloud.google.com/security/beyondprod/ 15/17

By building shared components, the burden on individual developers to meet common security
requirements is minimal. Ideally, security functionality should require little to no integration into
each individual application, and is instead provided as a fabric enveloping and connecting all
microservices. This is commonly called a service mesh. This also means that security can be
managed and implemented separately from regular development or deployment activities.

Making the change to cloud-native

Google’s transition to cloud-native required changes in two main areas: in our infrastructure and
in our development process. We tackled these changes simultaneously, but they could be
decoupled and addressed independently.

Changing our infrastructure

We started by building a strong foundation of service identity, authentication, and
authorization. Having a foundation of trusted service identities in place enabled us to
implement higher-level security capabilities dependent on validating these service identities,
such as Service Access Policies and EUC tickets. To make this transition simple for both new
and existing services, ALTS was �rst provided as a library with a single helper daemon. This
daemon ran on the host called by every service, and evolved over time into a library using
service credentials. The ALTS library was integrated seamlessly into the core RPC library�this
made it easier to gain wide adoption, without signi�cant burden on individual development
teams. ALTS rollout was a prerequisite to rolling out Service Access Policies and EUC tickets.

Changing our development processes

It was crucial for Google to establish a robust build and code review process. This allowed us to
ensure both the integrity of services that are running, and that the identities used by ALTS are
meaningful. We established a central build process where we were able to begin enforcing
requirements such as a two-person code review and automated testing at build and deployment
time. (See the Binary Authorization for Borg
 (https://cloud.google.com/security/binary-authorization-for-borg) whitepaper for more details on
deployment.)

Once we had the basics in place, we started to address the need to run external, untrusted code
in our environments. To achieve this goal, we started sandboxing��rst with ptrace, then later
using gVisor. Similarly, blue/green deployments provided signi�cant bene�t in terms of security
(e.g., patching) as well as reliability.

https://cloud.google.com/security/binary-authorization-for-borg


1/23/2020 BeyondProd: A new approach to cloud-native security  |  Documentation  |  Google Cloud

https://cloud.google.com/security/beyondprod/ 16/17

We quickly discovered that it was easier if a service started out by logging policy violations
rather than blocking violations. The bene�t of this approach was two-fold. First, it gave the
service owners a chance to test the change and gauge the impact (if any) that moving to a
cloud-native environment would have on their service. Second, it enabled us to �x any bugs as
well as identify any additional functionality that we might need to provide to service teams. For
example, when a service is onboarded to BAB, the service owners enable audit-only mode. This
helps them identify code or work�ows that don't meet their requirements. Once they address the
issues �agged by audit-only mode, the service owners switch to enforcement mode. In gVisor,
we did this by �rst sandboxing workloads, even with compatibility gaps in the sandboxing
capabilities, and then addressing these gaps systematically to improve the sandbox.

Bene�ts of making the change

In the same way that BeyondCorp helped us to evolve beyond a perimeter based security model,
BeyondProd represents a similar leap forward in our approach to production security. The
BeyondProd approach describes a cloud-native security architecture that assumes no trust
between services, provides isolation between workloads, veri�es that only centrally built
applications are deployed, automates vulnerability management, and enforces strong access
controls to critical data. The BeyondProd architecture led Google to innovate several new
systems in order to meet these requirements.

All too often, security is ‘called in’ last�when the decision to migrate to a new architecture has
already been made. By involving your security team early and focusing on the bene�ts of the
new security model like simpler patch management and tighter access controls, a cloud-native
architecture can provide signi�cant bene�ts to both application development and security
teams. When applying the security principles outlined in this paper to your cloud-native
infrastructure, you can strengthen the deployment of your workloads, how your workloads’
communications are secured, and how they affect other workloads.

Notes

 Borg (https://research.google.com/pubs/pub43438.html?hl=es) is Google’s cluster
management system for scheduling and running workloads at scale. Borg was Google’s �rst
uni�ed container management system (https://queue.acm.org/detail.cfm?id=2898444), and the
inspiration for Kubernetes (http://kubernetes.io).

1 (#anchor-1)

( )

https://research.google.com/pubs/pub43438.html?hl=es
https://queue.acm.org/detail.cfm?id=2898444
http://kubernetes.io/


1/23/2020 BeyondProd: A new approach to cloud-native security  |  Documentation  |  Google Cloud

https://cloud.google.com/security/beyondprod/ 17/17

 "Shifting left" refers to moving steps earlier in the software development lifecycle,
which may include steps like code, build, test, validate, and deploy. Lifecycle diagrams are
frequently drawn from left to right, so left means at an earlier step.

 A blue/green deployment is a way to roll out a change to a workload without
affecting incoming tra�c, so that end users don’t experience any downtime in accessing the
application.

 To better understand how tra�c is routed inside Google’s infrastructure from the
GFE to a service, see the How tra�c gets routed
 (https://cloud.google.com/security/encryption-in-transit/#how_tra�c_gets_routed) section of our
Encryption in Transit whitepaper.

 Borgmaster is Borg (https://ai.google/research/pubs/pub43438)’s centralized controller.
It manages scheduling of jobs, and communicates with running jobs on their status.

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License
 (https://creativecommons.org/licenses/by/4.0/), and code samples are licensed under the Apache 2.0 License
 (https://www.apache.org/licenses/LICENSE-2.0). For details, see our Site Policies
 (https://developers.google.com/terms/site-policies). Java is a registered trademark of Oracle and/or its a�liates.

Last updated December 17, 2019.

2 (#anchor-2)

3 (#anchor-3)

4 (#anchor-4)

5 (#anchor-5)

https://cloud.google.com/security/encryption-in-transit/#how_traffic_gets_routed
https://ai.google/research/pubs/pub43438
https://creativecommons.org/licenses/by/4.0/
https://www.apache.org/licenses/LICENSE-2.0
https://developers.google.com/terms/site-policies

