
1/23/2020 Binary Authorization for Borg: how Google verifies code provenance and implements code identity | Documentation | Google Cloud

https://cloud.google.com/security/binary-authorization-for-borg/ 1/16

Google has written several whitepapers explaining projects our security team have developed
internally to help improve security, including BeyondCorp (https://cloud.google.com/beyondcorp)

and BeyondProd (https://cloud.google.com/security/beyondprod). For an overview of Google’s
security, see our Security Infrastructure Design
 (https://cloud.google.com/security/infrastructure/design/) whitepaper.

In this whitepaper we describe Google's code review process, its provenance , and
the need for enforcement mechanisms. We focus on the development of a speci�c
enforcement check - Binary Authorization for Borg (BAB). The goal of BAB is to reduce insider
risk by ensuring that production software deployed at Google is properly reviewed and
authorized, particularly if that code has the ability to access user data. For all Google products,
we value the protection of user data and we strive to be as transparent as possible about the
security measures we take.

The content of this whitepaper is correct as of December 2019. This document represents the
status quo as of the time it was written. Google Cloud’s security policies and systems may
change going forward, as we continually improve protection for our customers.

CIO-level summary

Insider risk represents a threat to the security of user data. At Google, we want to do as
much as we can to minimize the potential for Google personnel to use their
organizational knowledge or access to user data in an unauthorized way this includes
running an unauthorized job.

Binary Authorization for Borg, or BAB, is an internal deploy-time enforcement check that
minimizes insider risk by ensuring that production software and con�guration deployed at
Google is properly reviewed and authorized, particularly if that code has the ability to
access user data.

BAB ensures that code and con�guration deployments meet certain minimum standards.

Binary Authorization for Borg: how Google
veri�es code provenance and implements
code identity

1 (#footnote-1)

https://cloud.google.com/beyondcorp
https://cloud.google.com/security/beyondprod
https://cloud.google.com/security/infrastructure/design/

1/23/2020 Binary Authorization for Borg: how Google verifies code provenance and implements code identity | Documentation | Google Cloud

https://cloud.google.com/security/binary-authorization-for-borg/ 2/16

In addition to enforcement, BAB can also be used in a non-enforcing auditing mode to
warn when certain requirements are not met.

Adopting BAB helps Google reduce insider risk, prevent possible attacks, and support the
uniformity of Google’s production systems.

Minimizing insider risk at Google

As a company where security is a top priority, we have put in place measures to limit our insider
risk the potential for Google personnel (or any other person in the organization) to use their
organizational knowledge or access to perform malicious acts. Insider risk also covers the
scenario where an attacker has compromised the credentials of someone at Google to facilitate
their attack. We have devoted signi�cant resources to innovation in the area of insider risk
protection. At Google, safeguarding user data is paramount and we strive to protect it
comprehensively. Our goal is to prevent a Google employee from accessing user data without
authorization.

Authorization for access to user data

At Google, there are times when our services and personnel have to access user data. We
interact with user data in the following ways:

1. As an end user: An employee using a service authenticates to the service directly and the
service returns their own data. For example, an employee logging into their Gmail account
will see their own emails.

2. As part of their role: The majority of the work done by Google personnel can be
successfully completed using anonymized user data. However, on rare occasions, our
personnel require access to user data
 (https://cloud.google.com/logging/docs/audit/reading-access-transparency-
logs#justi�cation_reason_codes)

as part of their job (for example, support or debugging). We aim to provide as much
transparency about user data accesses as possible. One of the ways we do this is with
Access Transparency (https://cloud.google.com/access-transparency/) a feature that enables
Google Cloud customers to see eligible accesses of their data through real-time logs.

3. As part of a service, programmatically: In order to accomplish a task, a service may need
to access user data programmatically on a large scale. For example, a data pipeline will
query thousands of users’ data at once in order to generate aggregated usage statistics.

https://cloud.google.com/logging/docs/audit/reading-access-transparency-logs#justification_reason_codes
https://cloud.google.com/access-transparency/

1/23/2020 Binary Authorization for Borg: how Google verifies code provenance and implements code identity | Documentation | Google Cloud

https://cloud.google.com/security/binary-authorization-for-borg/ 3/16

When this type of need arises, access is granted for a data set rather than for an
individual user’s data. Access to each individual user’s data is not logged.

This whitepaper focuses on the threat model presented in the third scenario. We want to have
con�dence that the administrators who run the systems that access user data cannot abuse
their powers.

Threat model

The controls we discuss in this paper were built to protect user data by preventing unilateral
access. We want to stop Google personnel, acting alone, from directly or indirectly accessing or
otherwise affecting user data without proper authorization and justi�cation. Our controls
prevent these actions regardless of whether the actor has malicious intent, their account has
been compromised, or they have unintentionally been granted authorization.

Google’s containerized infrastructure

Our infrastructure is containerized, using a cluster management system called Borg
 (https://research.google.com/pubs/pub43438.html?hl=es). We run hundreds of thousands of jobs
from many different applications, across multiple clusters, each with up to tens of thousands
of machines. Despite this scale, our production environment is fairly homogeneous. As a result,
the touchpoints for access to user data can be more easily controlled and audited.

Furthermore, by using containers, we have gained notable security bene�ts. Containers are
meant to be used immutably, with frequent re-deployments from a complete image rebuild. This
property enables us to review a code change in context, and provides a single choke point for
all changes that get deployed into our infrastructure.

To understand how we developed a solution that limits programmatic access to user data by a
service, it’s important to �rst understand how a service goes into production at Google.

Step 1: Code review

Our source code is stored in a monolithic central repository
 (https://ai.google/research/pubs/pub45424) that enables thousands of employees to check code
into a single location. Using a single code base simpli�es source code management, in
particular our dependencies on third party code. A monolithic code base also allows for the

https://research.google.com/pubs/pub43438.html?hl=es
https://ai.google/research/pubs/pub45424

1/23/2020 Binary Authorization for Borg: how Google verifies code provenance and implements code identity | Documentation | Google Cloud

https://cloud.google.com/security/binary-authorization-for-borg/ 4/16

enforcement of a single choke point for code reviews. At Google, our code reviews include
inspection and approval from at least one engineer other than the author. Our code review
process enforces a rule that, at a minimum, code modi�cations to any system must be
approved by the owners of that system. Once the code is checked in, it is built.

When importing changes from third party or open source code, we verify that the change is
appropriate (for example, the latest version). However, we often don't have the same review
controls in place for every change made by external developers to the third party or open source
code we use.

Step 2: Veri�able builds

We use a build system very similar to Bazel (https://bazel.build/), which builds and compiles
source code, creating a binary for deployment. Our build system runs in an isolated and locked-
down environment that is separated from the employees performing the builds. For each build,
the system produces a veri�able build manifest a signed certi�cate fully describing the
sources that went into the build, the cryptographic hashes of any binaries or other build
artifacts, and the full build parameters. This manifest enables us to trace a binary to the source
code that was used in its creation, and by extension, to the process around the creation and
submission of the source code it describes. In addition, the manifest enables us to verify that
the binary wasn’t modi�ed as any changes to the �le would automatically invalidate its
signature.

Since build actions can in theory be arbitrary code, our build system has been hardened for
multi-tenancy. In other words, our build system is designed to prevent one build from
in�uencing any other builds. The system prevents builds from making changes that could
compromise the integrity of the veri�able build manifests or of the system itself. Once the build
is complete, the change is deployed using Borg.

Step 3: Deployment jobs

Once built, a binary can be deployed in our containerized infrastructure as a Borg job. These
jobs use packages that may contain binaries or data, whose installation is managed by Borg. A
Borg con�guration speci�es the requirements for the job to be deployed: the packages, the
runtime parameters, arguments, and �ags. Borg schedules the job taking into account its
constraints, priority, quota, and any other requirements listed in the con�guration. Once
deployed, the Borg job can interact with other jobs in production.

https://bazel.build/

1/23/2020 Binary Authorization for Borg: how Google verifies code provenance and implements code identity | Documentation | Google Cloud

https://cloud.google.com/security/binary-authorization-for-borg/ 5/16

Step 4: Job identity

A Borg job runs as an identity; it is this identity which is used to access data stores or remote
procedure call (RPC) methods of other services. An identity can be either a role account (like a
service) or a user account (like an employee’s individual account). Multiple jobs may run as the
same identity. We restrict the ability to deploy or modify jobs with a particular identity to those
responsible for running the service generally our Site Reliability Engineers (SREs)
 (https://landing.google.com/sre/).

When Borg starts a job, it provisions the job with cryptographic credentials. The job uses these
credentials to prove its identity when making requests of other services (using Application
Layer Transport Security
 (https://cloud.google.com/security/encryption-in-transit/application-layer-transport-security/)). For a
service to access certain data or another service, its identity must have the necessary
permissions. Consider the example of a service such as Google Cloud’s Cloud Data Loss
Prevention (Cloud DLP) API. In order for the DLP API to access data for scanning, it needs two
things. First, the DLP API needs to be con�gured to run with a distinct identity, in this case a role
account. Second, the permissions on the data the DLP API is scanning need to include that role
account. Without a valid identity and the correct permissions, the service would be unable to
perform the scan.

Our policies require that any role account with access to user data (or any other sensitive
information) be tightly controlled by BAB and other security systems. Quality assurance and
development jobs which don’t have access to sensitive data or resources are permitted to run
with fewer controls.

Pu�ing it all together: Life of a job

In summary, the steps to running a job on our infrastructure are as follows:

1. A Google developer authors a change to code. They then send it to one or more other
Google engineers for review. The review includes checks for proper authorization and
logging. Once approved, the code is checked in.

2. Triggered by the developer, the build system veri�ably builds and packages the binaries in
a sandboxed environment. This build operation produces a package which the build
system then signs for veri�cation purposes.

3. The job is deployed on Borg by an engineer who is speci�cally authorized to manage jobs
that run under the appropriate secure identity.

https://landing.google.com/sre/
https://cloud.google.com/security/encryption-in-transit/application-layer-transport-security/

1/23/2020 Binary Authorization for Borg: how Google verifies code provenance and implements code identity | Documentation | Google Cloud

https://cloud.google.com/security/binary-authorization-for-borg/ 6/16

4. When a Borg job tries to access privileged resources like user data, the job’s identity is
veri�ed for authorization

Now that you know how jobs are run in our production environment, let's examine the threat
model that BAB addresses preventing a potential malicious insider from running an
unauthorized job. To achieve this, BAB veri�es that all necessary security checks have taken
place before a binary is deployed.

This section provided an overview of our containerized infrastructure. A basic grasp of our
production environment is a necessary prerequisite for you to understand the controls we have
in place for programmatic user access to data. These controls are described in more detail in
the next section.

Binary Authorization for Borg (BAB)

For several years, we have had signi�cant efforts underway to protect user data from being
accessed manually. These efforts include limiting data and job management access to the set
of Google personnel who needed it to do their jobs.

BAB’s mission is to ensure that all production software and con�guration deployed at Google is
properly reviewed and authorized, particularly if that code has the ability to access user data.
To achieve its mission, BAB provides a deploy-time enforcement service to prevent
unauthorized jobs from starting, as well as an audit trail of the code and con�guration used in
BAB-enabled jobs.

Veri�cation

BAB veri�es that binaries meet certain requirements when they are deployed. For example, a
service owner could require that the binary for their service must be built from code that's
reviewed, checked in, tested, and authorized. We refer to these kinds of checks as deploy-time
checks. BAB can also perform checks once a binary has been deployed we call these post-
deploy checks. For more information on these post deployment veri�cations, see our
Enforcement modes (#enforcement-modes) section.

A code change creates a new binary. In order for the changes in the new binary to take effect, it
must be deployed. BAB allows many kinds of deploy-time checks. Some examples of these
checks include:

1/23/2020 Binary Authorization for Borg: how Google verifies code provenance and implements code identity | Documentation | Google Cloud

https://cloud.google.com/security/binary-authorization-for-borg/ 7/16

Is the binary built from checked in code?

Is the code submitted and checked into Google’s source code repository? For code to be
submitted, it must generally have been reviewed by a second Google engineer.

Is the binary built veri�ably?

Can this binary be traced back to auditable sources and was it built by an approved build
system?

Is the binary built from tested code?

Does the binary meet test requirements?

Is the binary built from code intended to be used in the deployment?

Has the code been submitted into the appropriate area of our source code repository that
corresponds to the relevant project or team for that particular Borg job?

Though these are speci�c to our production environment, similar requirements could be
enforced in your CI/CD (Continuous Integration/Continuous Deployment) environments based
on your own security, compliance, or reliability requirements.

Service-speci�c policy

Jobs that access sensitive data generally require code to be submitted, with some exceptions
for valid business reasons. Sensitive data includes user data, employment and �nancial data,
and any other need-to-know proprietary or business data. All jobs at Google are required to have
a policy even a Borg job needing no access to user data will have a policy de�ned, but no
speci�c requirements listed.

When service owners onboard to BAB, they de�ne a policy with the security requirements for
their service. All role accounts used to implement their service must specify a BAB Policy. For
each role account, the BAB Policy de�nes the intended jobs to be launched and the job’s code
and con�guration requirements. De�ning or modifying a policy is itself a code change that
must be reviewed.

Requirements that can be enforced in a BAB Policy include:

Code is built veri�ably: Code that is built veri�ably is auditable, however it doesn’t
necessarily mean that the code has undergone a code review there are even cases where
code is unsubmitted (#emergency-response-procedures). Code used in veri�able builds is
auditable for at least 18 months, even if it is not submitted.

1/23/2020 Binary Authorization for Borg: how Google verifies code provenance and implements code identity | Documentation | Google Cloud

https://cloud.google.com/security/binary-authorization-for-borg/ 8/16

Code is submitted: The code is built from a speci�ed, intended, location in our source
repository. This generally implies that the code has undergone a code review.

Con�gurations are submitted: Any con�gurations provided during deployment go
through the same review and submission process as regular code. Consequently,
command line �ag values, arguments, and parameters can’t be modi�ed without review.

The systems and components that enforce BAB need to be tightly controlled. This is achieved
by implementing the strictest possible requirements, plus additional manual controls.

Enforcement modes

BAB takes different actions based on the policy speci�ed by the Borg job. We refer to these
actions as enforcement modes, of which there are three: deploy-time enforcement, deploy-time
audit, and continuous veri�cation. When de�ning a policy, the service owner must choose either
deploy-time enforcement or deploy-time auditing. Continuous veri�cation mode is enabled by
default. The next sections provide more details on each mode.

Deploy-time enforcement mode

When a new job is submitted, Borgmaster consults BAB to verify that the job
meets the necessary requirements as laid out in the BAB Policy. This check acts as an
admission controller if requirements are met, then Borgmaster will launch the job. If not, the
Borgmaster will reject the request even if the user making the request is otherwise authorized.

In enforcement mode, BAB will block a Borg job from being deployed if it doesn’t meet the
requirements set out in the BAB Policy for the Borg job. Services that are new to BAB typically
start out in audit mode (#deploy-time-audit-mode) (described in the next section), then graduate to
enforcement mode.

Emergency response procedures

In the case of an incident or outage, our �rst priority is to restore the affected service as quickly
as possible. In an emergency situation, it may be necessary to run code that hasn’t been
reviewed or checked in. As a result, enforcement mode can be overridden using an emergency
response �ag. Emergency response procedures also act as a backup in case there is a failure
of BAB that would otherwise block a deployment. A developer deploying a job using the
emergency response procedure must submit a justi�cation as part of their request.

2 (#footnote-2)

1/23/2020 Binary Authorization for Borg: how Google verifies code provenance and implements code identity | Documentation | Google Cloud

https://cloud.google.com/security/binary-authorization-for-borg/ 9/16

Within seconds of the emergency response procedure getting used, BAB logs details about the
associated Borg job. The log includes the code that was used and the user-provided
justi�cation. A few seconds later, an audit trail is sent to our centralized security team. Within
hours, the audit trail is sent to the team which owns the role account. Emergency response
procedures are only meant to be used as a last resort.

Deploy-time audit mode

In audit mode, BAB logs when a Borg job doesn’t meet the policy requirements but won’t block
its deployment. This policy breach triggers an alert to the team which owns the role account.

At Google, we require certain services, such as those accessing user data, to use enforcement
mode. We strongly encourage all service owners to use enforcement mode, and only use audit
mode when onboarding a new service. To use audit mode, service owners must provide a
justi�cation to get an exception. For example, a service whose reliability SLO (Service Level
Objective) is signi�cantly higher than what BAB provides, would use audit mode.

Although audit mode is useful when �ne-tuning an initial policy, it’s not a practical steady state
for most services. When using audit mode, the service owner isn't noti�ed of any policy
violations until several hours after the violation has occurred. This can lead to a noisy stream
of noti�cations, causing true security issues to be hidden by mistakes or policy
miscon�gurations that were introduced by the service owner. With enforcement mode, the
service owner gets immediate feedback when they attempt to launch a job that doesn't adhere
to the policy. As a result, their stream of noti�cations is much cleaner. Additionally, enforcement
mode in BAB catches inadvertent errors, such as accidentally launching a job into a role other
than the one it is designated to run in.

Continuous veri�cation

Once a job is deployed, regardless of its enforcement at deployment time, it’s continuously
veri�ed for its lifetime. A BAB process runs at least once a day to check that any jobs that were
started (and may still be running) conform to any updates to their policies. For example,
continuous veri�cation mode is constantly checking for jobs that are running with outdated
policies or with an identity that was deployed using emergency response procedures. If a job is
found that doesn’t adhere to the updated policy, BAB will notify the service owners so they can
mitigate the risk.

Globally allowed packages

1/23/2020 Binary Authorization for Borg: how Google verifies code provenance and implements code identity | Documentation | Google Cloud

https://cloud.google.com/security/binary-authorization-for-borg/ 10/16

At Google, there are some packages that are widely used by many of our services. Rather than
forcing each service to maintain its own version, these packages are centrally allowed we call
them globally managed packages. When writing their BAB Policy, a service owner can specify a
globally allowed package for a given job. There is also a global default mechanism for widely
used packages, so that they don’t need to be individually listed as part of each service’s policy.
This allows Google to maintain explicit control over common system components used across
the organization, and ensures these are properly reviewed and updated without involving
individual teams. Although an individual service owner could allow these packages explicitly as
part of their service’s BAB Policy, this makes the recommended and supported path easy for
owners to use.

Edge cases

Google implements robust security controls for code deployed in production, including code
reviews (#step-1-code-review) and veri�able builds (#step-2-veri�able-builds). BAB acts as an
additional control and enforcement point to ensure that these security controls are in fact
properly implemented.

However, BAB cannot be effectively used in all cases. BAB does not support the following edge
cases: code built using non-standard build systems; code deployed in environments other than
Borg; and data analysis and machine learning code, which doesn’t lend itself well to human
code reviews before the �nal production parameters are chosen. In these cases, a variety of
other security mitigations are in place, including other code provenance systems. This code is
nonetheless still subject to Google’s general security controls.

Implementing Binary Authorization for Borg

To implement BAB, the BAB team developed several new features, including emergency
response procedures and audit mode. These tools made it as easy as possible for service
owners to try BAB for themselves. If you’re considering deploying something like BAB in your
organization, you may need to do some additional work to facilitate this transition. This section
describes the organizational and change management work that we did as part of our
implementation plan.

Bene�ts

1/23/2020 Binary Authorization for Borg: how Google verifies code provenance and implements code identity | Documentation | Google Cloud

https://cloud.google.com/security/binary-authorization-for-borg/ 11/16

BAB has three bene�ts which helped build the business case for its development and adoption
at Google namely, reduced insider risk, robust code identity, and simpli�ed compliance.

Reduced insider risk

BAB was primarily developed to prevent any single individual from obtaining unauthorized
programmatic access to user data. BAB makes it more di�cult for a single engineer, or an
attacker who gains an engineer’s credentials to access sensitive data inappropriately and
without detection.

Robust code identity

As described in the Containerized infrastructure (#containerized-infrastructure) section, Borg jobs
run as an identity, typically a role account. This identity is used by other services to verify proper
authorization before granting access to any data. However, other services can’t enforce the use
of that data and so must trust that the job identity is not abusing the data it received. BAB ties a
job’s identity to speci�c code, ensuring that only the speci�ed code can be used to exercise the
job identity’s privileges. This allows for a transition from a job identity—trusting an identity and
any of its privileged human users transitively, to a code identity—trusting a speci�c piece of
code that was reviewed to have a speci�c semantics and which cannot be modi�ed without
approval processes.

Simpli�ed compliance

BAB simpli�ed what were previously manual compliance tasks. Certain processes at Google
require tighter controls on how they deal with data. For example, our �nancial reporting systems
must comply with the Sarbanes-Oxley Act (SOX). Prior to BAB, we had a system that helped us
manually perform veri�cations to ensure our compliance. Post BAB, many of these checks were
automated based on the services’ BAB Policies. Automating these checks enabled the
compliance team to increase both the scope of services covered and the adoption of
appropriate controls on these services.

Onboarding a service

The BAB team had to ensure that the onboarding process was simple and straightforward.
Initially, service owners at Google had two main concerns about adopting BAB:

1/23/2020 Binary Authorization for Borg: how Google verifies code provenance and implements code identity | Documentation | Google Cloud

https://cloud.google.com/security/binary-authorization-for-borg/ 12/16

If BAB wasn't su�ciently reliable, its implementation could block changes in critical
situations.

BAB could slow the development of a service with frequent code check-ins and iterative
processes.

To address these initial concerns, the BAB team developed audit mode (#deploy-time-audit-mode).
Using this mode, the BAB team was able to prove to some key early adopters that BAB worked.
To further enforce its reliability, the BAB team developed an availability SLO and introduced
emergency response procedures (#emergency-response-procedures) for enforcement mode
 (#deploy-time-enforcement-mode).

When onboarding an existing service to BAB, the service owner typically enables audit-only
mode �rst. This helps them to identify and address any issues before turning on enforcement
mode. The default policy for any job using BAB in production is enforcement mode. To deploy
their job, the service owner must submit a policy that, at a minimum, requires code to be
submitted and built veri�ably. A service owner may deploy their job without meeting this
minimum standard, but they must be granted an exception. If the service needs access to more
sensitive data and/or services, the owner can move to stricter requirements. De�ning an initial
policy can be di�cult, so the BAB team created automated tooling to help service owners write
their policies. The tools look at which parts of the source repository are used for an existing job,
and suggest an appropriate policy.

When onboarding a new service to BAB, the service owner enables enforcement mode from the
beginning. The service owner drafts an initial policy and rapidly iterates to add additional
requirements. The policies themselves are managed as code changes and so require a second
Google engineer to review any updates.

Impact

Adopting BAB and a containerized deployment model provides many bene�ts to Google in
terms of security and supportability:

BAB helps reduce overall insider risk: By requiring code to meet certain standards and
change management practices before accessing user data, BAB reduces the potential for
a Googler acting alone (or whose account has been compromised) from accessing user
data programmatically.

1/23/2020 Binary Authorization for Borg: how Google verifies code provenance and implements code identity | Documentation | Google Cloud

https://cloud.google.com/security/binary-authorization-for-borg/ 13/16

BAB supports uniformity of production systems: By using containerized systems and
verifying their BAB requirements prior to deployment, our systems are easier to debug,
more reliable, and have clearer change management. BAB requirements provide a
common language for production system requirements.

BAB dictates a common language for data protection: BAB tracks conformance across
our systems. Data about this conformance is published internally and is queryable by
other teams. Publishing BAB data in this way enables teams to use common terms when
communicating with each other about their data protection. This common language
reduces the back-and-forth work needed when working with data across teams.

BAB allows programmatic tracking of compliance requirements: Certain processes, such
as those for �nancial reporting, need to meet certain change management requirements
for compliance purposes. Using BAB, these checks can be automated, saving time and
increasing the scope of coverage.

BAB is one of several technologies used at Google to mitigate insider risk.

Adopting similar controls in your organization

We learned many important lessons when implementing BAB at Google. Making such a large
change can seem like a daunting task. In this section we share the lessons we learned along
the way in the hope that you can apply the principles of BAB to your organization.

Work towards a more homogeneous containerized CI/CD pipeline.

Adoption of BAB at Google was made possible by the consistency and integration of the
tooling we use in our code development. This work included code reviews, veri�able builds,
containerized deployments, and service-based identity for access control. Veri�able builds
allow you to check how your binaries are built; and containers allow you to separate binaries
from data and give you an enforcement choke point to ensure these meet requirements for use.
This approach simpli�ed the adoption of BAB and strengthened the guarantees that a solution
like BAB can provide.

The introduction of microservices allowed the adoption of service-based identity (like a service
account), rather than host-based identity (like an IP address). Making the shift towards a
service-based identity will enable you to change how you manage authentication and
authorization between services. For example, if you’re using an identity token baked into a
container image to attest identity, the guarantees provided by code provenance will not be as

1/23/2020 Binary Authorization for Borg: how Google verifies code provenance and implements code identity | Documentation | Google Cloud

https://cloud.google.com/security/binary-authorization-for-borg/ 14/16

strong. If you’re not able to directly adopt a service identity, you could try more strongly
protecting identity tokens as an interim step.

Determine your goals, and de�ne your policies based on your requirements.

Build your policy-driven release process one piece at a time. You may need to implement certain
changes earlier than others in your CI/CD pipeline. For example, you may need to start
conducting formal code reviews before you can enforce them at deployment time.

A great motivator for a policy-driven release process is compliance if you can encode at least
some of your compliance requirements in a policy, it can help automate your tests and ensure
they are always in effect. Start with a base set of requirements and codify more advanced
requirements as you go.

Enforce policies early in development.

It’s hard to de�ne comprehensive policies on a piece of software without �rst knowing where it
will run and what data it will access. This is why BAB Policy enforcement is done when code is
deployed and when it accesses data, not when it‘s built. A BAB Policy is de�ned in terms of
runtime identity, so the same code may run in different environments and be subject to different
policies.

We use BAB in addition to other access mechanisms to limit access to user data. Using BAB in
this way, service owners can further ensure that data is only accessed by a job meeting
particular BAB requirements, effectively treating the code as identity.

Determine how to onboard existing service owners.

Identify a handful of service owners who will see immediate bene�ts from enforcement and are
willing to provide feedback. One way to do this might be to ask owners to volunteer before
making any changes mandatory.

If possible, require enforcement mode over audit mode or be forceful by limiting the grace
period for audit mode. Audit mode allows owners to quickly onboard and better understand
insider risk. The drawback of audit mode is that it can take time to see a tangible reduction in
insider risk. This delay can make it hard to show value and convince others to adopt
enforcement. When the BAB team provided emergency response procedures for enforcement,
service owners were more willing to adopt enforcement, giving them an escape hatch if they
needed it.

Enlist change agents across teams.

1/23/2020 Binary Authorization for Borg: how Google verifies code provenance and implements code identity | Documentation | Google Cloud

https://cloud.google.com/security/binary-authorization-for-borg/ 15/16

When we created a Google-wide mandate for BAB deployment, what most affected our success
rate was �nding owners to drive the change in each product group. Once we had their help, we
set up a formal change management team to track ongoing changes. We then identi�ed
accountable owners in each product team to implement the changes.

Figure out how to manage third party code.

Many of the CI/CD controls we describe in this paper are placed where your code is developed,
reviewed, and maintained by one organization. If you are in this situation, consider how you will
include third party code as part of your policy requirements. For example, you could initially
exempt the code, while you move towards an ideal state of keeping a repository of all third
party code used, and regularly vet that code against your security requirements.

Conclusion

Implementing a deploy-time enforcement check as part of Google’s containerized infrastructure
and CI/CD process has enabled us to verify that the code and con�guration we deploy meet
certain minimum standards for security. This is a critical control used to limit the ability of a
potentially malicious insider to run an unauthorized job that could access user data. Adopting
BAB has allowed Google to reduce insider risk, prevent possible attacks, and also support the
uniformity of our production systems.

Fu�her references

To learn more about Google’s overall security and containerized infrastructure, check out these
resources:

Google’s infrastructure

Borg: Large-scale cluster management at Google with Borg
 (https://research.google.com/pubs/pub43438.html?hl=es)

Monolithic repository: Why Google Stores Billions of Lines of Code in a Single
Repository (https://ai.google/research/pubs/pub45424)

Bazel (https://bazel.build/)

Google’s security

BeyondProd (https://cloud.google.com/security/beyondprod)

https://research.google.com/pubs/pub43438.html?hl=es
https://ai.google/research/pubs/pub45424
https://bazel.build/
https://cloud.google.com/security/beyondprod

1/23/2020 Binary Authorization for Borg: how Google verifies code provenance and implements code identity | Documentation | Google Cloud

https://cloud.google.com/security/binary-authorization-for-borg/ 16/16

Infrastructure Security Design whitepaper
 (https://cloud.google.com/security/infrastructure/design/)

Application Layer Transport Security
 (https://cloud.google.com/security/encryption-in-transit/application-layer-transport-security/)

Encryption at Rest whitepaper
 (https://cloud.google.com/security/encryption-at-rest/default-encryption/)

For Google Cloud users

Binary Authorization (https://cloud.google.com/binary-authorization/)

Container security (https://cloud.google.com/containers/security)

Access Transparency (https://cloud.google.com/access-transparency/)

Notes

 Provenance describes the components, changes made to the components, and
their origination. See https://csrc.nist.gov/glossary/term/Provenance
 (https://csrc.nist.gov/glossary/term/Provenance).

 Borgmaster is Borg (https://ai.google/research/pubs/pub43438)’s
centralized controller. It manages scheduling of jobs, and communicates with running jobs on
their status.

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License
 (https://creativecommons.org/licenses/by/4.0/), and code samples are licensed under the Apache 2.0 License
 (https://www.apache.org/licenses/LICENSE-2.0). For details, see our Site Policies
 (https://developers.google.com/terms/site-policies). Java is a registered trademark of Oracle and/or its a�liates.

Last updated December 17, 2019.

1 (#top_of_page)

2 (#deploy-time-enforcement-mode)

https://cloud.google.com/security/infrastructure/design/
https://cloud.google.com/security/encryption-in-transit/application-layer-transport-security/
https://cloud.google.com/security/encryption-at-rest/default-encryption/
https://cloud.google.com/binary-authorization/
https://cloud.google.com/containers/security
https://cloud.google.com/access-transparency/
https://csrc.nist.gov/glossary/term/Provenance
https://ai.google/research/pubs/pub43438
https://creativecommons.org/licenses/by/4.0/
https://www.apache.org/licenses/LICENSE-2.0
https://developers.google.com/terms/site-policies

