
1/23/2020 Automating responses to integrity validation failures | Documentation | Google Cloud

https://cloud.google.com/security/shielded-cloud/automating-responses-integrity-failures 1/12

Learn how to use a Cloud Functions trigger to automatically act on Shielded VM integrity
monitoring (https://cloud.google.com/compute/docs/instances/integrity-monitoring) events.

Overview

Integrity monitoring collects measurements from Shielded VM instances and surfaces them in
Stackdriver Logging. If integrity measurements change across boots of a Shielded VM
instance, integrity validation fails. This failure is captured as a logged event, and is also raised
in Stackdriver Monitoring.

Sometimes, Shielded VM integrity measurements change for a legitimate reason. For
example, a system update might cause expected changes to the operating system kernel.
Because of this, integrity monitoring lets you prompt a Shielded VM instance to learn a new
integrity policy baseline in the case of an expected integrity validation failure.

In this tutorial, you'll �rst create a simple automated system that shuts down Shielded VM
instances that fail integrity validation:

1. Export (https://cloud.google.com/logging/docs/export/con�gure_export_v2) all integrity
monitoring events to a Pub/Sub topic.

2. Create a Cloud Functions trigger
 (https://cloud.google.com/functions/docs/concepts/events-triggers#triggers) that uses the
events in that topic to identify and shut down Shielded VM instances that fail integrity
validation.

Next, you can optionally expand the system so that it prompts Shielded VM instances that fail
integrity validation to learn the new baseline if it matches a known good measurement, or to
shut down otherwise:

1. Create a Firestore database to maintain a set of known good integrity baseline
measurements.

2. Update the Cloud Functions trigger so that it prompts Shielded VM instances that fail
integrity validation to learn the new baseline if it is in the database, or else to shut down.

Automating responses to integrity validation
failures

https://cloud.google.com/compute/docs/instances/integrity-monitoring
https://cloud.google.com/logging/docs/export/configure_export_v2
https://cloud.google.com/functions/docs/concepts/events-triggers#triggers

1/23/2020 Automating responses to integrity validation failures | Documentation | Google Cloud

https://cloud.google.com/security/shielded-cloud/automating-responses-integrity-failures 2/12

If you choose to implement the expanded solution, use it in the following way:

1. Each time there is an update that is expected to cause validation failure for a legitimate
reason, run that update on a single Shielded VM instance in the instance group.

2. Using the late boot event from the updated VM instance as a source, add the new policy
baseline measurements to the database by creating a new document in the
known_good_measurements collection. See Creating a database of known good
baseline measurements (#create-database) for more information.

3. Update the remaining Shielded VM instances. The trigger prompts the remaining
instances to learn the new baseline, because it can be veri�ed as known good. See
Updating the Cloud Functions trigger to learn known good baseline (#trigger-learn-baseline)

for more information.

Prerequisites

Use a project that has Firestore in Native mode selected as the database service. You
make this selection when you create the project, and it can't be changed. If your project
doesn't use Firestore in Native mode, you will see the message "This project uses
another database service" when you open the Firestore console.

Have a Compute Engine Shielded VM instance in that project to serve as the source of
integrity baseline measurements. The Shielded VM instance must have been restarted at
least once.

Have the gcloud command-line tool installed
 (https://cloud.google.com/sdk/docs/#install_the_latest_cloud_sdk_version_cloudsdk_current_versi
on)

.

Enable the Stackdriver Logging and Cloud Functions APIs by following these steps:

1. GO TO APIS & SERVICES (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/APIS)

2. See if Cloud Functions API and Stackdriver Logging API appear on the Enabled
APIs and services list.

3. If either of the APIs don't appear, click Add APIs and Services.

4. Search for and enable the APIs, as needed.

https://cloud.google.com/sdk/docs/#install_the_latest_cloud_sdk_version_cloudsdk_current_version
https://console.cloud.google.com/apis

1/23/2020 Automating responses to integrity validation failures | Documentation | Google Cloud

https://cloud.google.com/security/shielded-cloud/automating-responses-integrity-failures 3/12

Expo�ing integrity monitoring log entries to a Pub/Sub topic

Use Logging to export all integrity monitoring log entries generated by Shielded VM instances
to a Pub/Sub topic. You use this topic as a data source for a Cloud Functions trigger to
automate responses to integrity monitoring events.

1. GO TO STACKDRIVER LOGGING (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/LOGS)

2. Click the drop-down arrow on the right side of Filter by label or text search, and then
click Convert to advanced �lter.

3. Type the following advanced �lter:

replacing YOUR_PROJECT_ID with the ID of your project. Note that there are two spaces
after logName:.

4. Click Submit Filter.

5. Click on Create Export.

6. For Sink Name, type integrity-monitoring.

7. For Sink Service, select Cloud Pub/Sub.

8. Click the drop-down arrow on the right side of Sink Destination, and then click Create
new Cloud Pub/Sub topic.

9. For Name, type integrity-monitoring and then click Create.

10. Click Create Sink.

Creating a Cloud Functions trigger to respond to integrity failures

Create a Cloud Functions trigger that reads the data in the Pub/Sub topic and that stops any
Shielded VM instance that fails integrity validation.

1. The following code de�nes the Cloud Functions trigger. Copy it into a �le named
main.py.

resource.type="gce_instance" AND logName: "projects/YOUR_PROJECT_ID/logs/comp

import base64
import json

https://console.cloud.google.com/logs

1/23/2020 Automating responses to integrity validation failures | Documentation | Google Cloud

https://cloud.google.com/security/shielded-cloud/automating-responses-integrity-failures 4/12

import googleapiclient.discovery

def shutdown_vm(data, context):
 """A Cloud Function that shuts down a VM on failed integrity check."""
 log_entry = json.loads(base64.b64decode(data['data']).decode('utf-8'))
 payload = log_entry.get('jsonPayload', {})
 entry_type = payload.get('@type')
 if entry_type != 'type.googleapis.com/cloud_integrity.IntegrityEvent':
 raise TypeError("Unexpected log entry type: %s" % entry_type)

 report_event = (payload.get('earlyBootReportEvent')
 or payload.get('lateBootReportEvent'))

 if report_event is None:
 # We received a different event type, ignore.
 return

 policy_passed = report_event['policyEvaluationPassed']
 if not policy_passed:
 print('Integrity evaluation failed: %s' % report_event)
 print('Shutting down the VM')

 instance_id = log_entry['resource']['labels']['instance_id']
 project_id = log_entry['resource']['labels']['project_id']
 zone = log_entry['resource']['labels']['zone']

 # Shut down the instance.
 compute = googleapiclient.discovery.build(
 'compute', 'v1', cache_discovery=False)

 # Get the instance name from instance id.
 list_result = compute.instances().list(
 project=project_id,
 zone=zone,
 filter='id eq %s' % instance_id).execute()
 if len(list_result['items']) != 1:
 raise KeyError('unexpected number of items: %d'
 % len(list_result['items']))
 instance_name = list_result['items'][0]['name']

 result = compute.instances().stop(project=project_id,
 zone=zone,
 instance=instance_name).execute()
 print('Instance %s in project %s has been scheduled for shut down.'
 % (instance_name, project_id))

1/23/2020 Automating responses to integrity validation failures | Documentation | Google Cloud

https://cloud.google.com/security/shielded-cloud/automating-responses-integrity-failures 5/12

2. In the same location as main.py, create a �le named requirements.txt and copy in the
following dependencies:

3. Open a terminal window and navigate to the directory containing main.py and
requirements.txt.

4. Run the gcloud beta functions deploy command
 (https://cloud.google.com/sdk/gcloud/reference/beta/functions/deploy) to deploy the trigger:

replacing YOUR_PROJECT_ID with the ID of your project.

Creating a database of known good baseline measurements

Create a Firestore database to provide a source of known good integrity policy baseline
measurements. You must manually add baseline measurements to keep this database up to
date.

1.

GO TO THE VM INSTANCES PAGE (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/COMPUTE/INSTANCES)

2. Click the Shielded VM instance ID to open the VM instance details page.

3. Under Logs, click on Stackdriver Logging.

4. Locate the most recent lateBootReportEvent log entry.

5. Expand the log entry > jsonPayload > lateBootReportEvent > policyMeasurements.

6. Note the values for the elements contained in lateBootReportEvent >
policyMeasurements.

7. GO TO THE FIRESTORE CONSOLE (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/FIRESTORE/DATA)

8. Choose Start collection.

google-api-python-client==1.6.6
google-auth==1.4.1
google-auth-httplib2==0.0.3

gcloud beta functions deploy shutdown_vm --project YOUR_PROJECT_ID \
 --runtime python37 --trigger-resource integrity-monitoring \
 --trigger-event google.pubsub.topic.publish

https://cloud.google.com/sdk/gcloud/reference/beta/functions/deploy
https://console.cloud.google.com/compute/instances
https://console.cloud.google.com/firestore/data

1/23/2020 Automating responses to integrity validation failures | Documentation | Google Cloud

https://cloud.google.com/security/shielded-cloud/automating-responses-integrity-failures 6/12

9. For Collection ID, type known_good_measurements.

10. For Document ID, type baseline1.

11. For Field name, type the pcrNum �eld value from element 0 in lateBootReportEvent >
policyMeasurements.

12. For Field type, select map.

13. Add three string �elds to the map �eld, named hashAlgo, pcrNum, and value,
respectively. Make their values the values of the element 0 �elds in lateBootReportEvent
> policyMeasurements.

14. Create more map �elds, one for each additional element in lateBootReportEvent >
policyMeasurements. Give them the same sub�elds as the �rst map �eld. The values for
those sub�elds should map to those in each of the additional elements.

For example, if you are using a Linux VM, the collection should look similar to the
following when you are done:

If you are using a Windows VM, you will see more measurements thus the collection
should look similar to the following:

1/23/2020 Automating responses to integrity validation failures | Documentation | Google Cloud

https://cloud.google.com/security/shielded-cloud/automating-responses-integrity-failures 7/12

Updating the Cloud Functions trigger to learn known good baseline

1. The following code creates a Cloud Functions trigger that causes any Shielded VM
instance that fails integrity validation to learn the new baseline if it is in the database of
known good measurements, or else shut down. Copy this code and use it to overwrite
the existing code in main.py.

import base64
import json
import googleapiclient.discovery

import firebase_admin
from firebase_admin import credentials
from firebase_admin import firestore

PROJECT_ID = 'YOUR_PROJECT_ID'

firebase_admin.initialize_app(credentials.ApplicationDefault(), {
 'projectId': PROJECT_ID,
})

1/23/2020 Automating responses to integrity validation failures | Documentation | Google Cloud

https://cloud.google.com/security/shielded-cloud/automating-responses-integrity-failures 8/12

def pcr_values_to_dict(pcr_values):
 """Converts a list of PCR values to a dict, keyed by PCR num"""
 result = {}
 for value in pcr_values:
 result[value['pcrNum']] = value
 return result

def instance_id_to_instance_name(compute, zone, project_id, instance_id):
 list_result = compute.instances().list(
 project=project_id,
 zone=zone,
 filter='id eq %s' % instance_id).execute()
 if len(list_result['items']) != 1:
 raise KeyError('unexpected number of items: %d'
 % len(list_result['items']))
 return list_result['items'][0]['name']

def relearn_if_known_good(data, context):
 """A Cloud Function that shuts down a VM on failed integrity check.
 """
 log_entry = json.loads(base64.b64decode(data['data']).decode('utf-8'))
 payload = log_entry.get('jsonPayload', {})
 entry_type = payload.get('@type')
 if entry_type != 'type.googleapis.com/cloud_integrity.IntegrityEvent':
 raise TypeError("Unexpected log entry type: %s" % entry_type)

 # We only send relearn signal upon receiving late boot report event: if
 # early boot measurements are in a known good database, but late boot
 # measurements aren't, and we send relearn signal upon receiving early boo
 # report event, the VM will also relearn late boot policy baseline, which
 # don't want, because they aren't known good.
 report_event = payload.get('lateBootReportEvent')
 if report_event is None:
 return

 evaluation_passed = report_event['policyEvaluationPassed']
 if evaluation_passed:
 # Policy evaluation passed, nothing to do.
 return

 # See if the new measurement is known good, and if it is, relearn.
 measurements = pcr_values_to_dict(report_event['actualMeasurements'])

 db = firestore.Client()
 kg_ref = db.collection('known_good_measurements')

1/23/2020 Automating responses to integrity validation failures | Documentation | Google Cloud

https://cloud.google.com/security/shielded-cloud/automating-responses-integrity-failures 9/12

 # Check current measurements against known good database.
 relearn = False
 for kg in kg_ref.get():

 kg_map = kg.to_dict()

 # Check PCR values for lateBootReportEvent measurements against the know
 # measurements stored in the Firestore table

 if ('PCR_0' in kg_map and kg_map['PCR_0'] == measurements['PCR_0'] and
 'PCR_4' in kg_map and kg_map['PCR_4'] == measurements['PCR_4'] and
 'PCR_7' in kg_map and kg_map['PCR_7'] == measurements['PCR_7']):

 # Linux VM (3 measurements), only need to check above 3 measurements
 if len(kg_map) == 3:
 relearn = True

 # Windows VM (6 measurements), need to check 3 additional measurements
 elif len(kg_map) == 6:
 if ('PCR_11' in kg_map and kg_map['PCR_11'] == measurements['PCR_11'
 'PCR_13' in kg_map and kg_map['PCR_13'] == measurements['PCR_13'
 'PCR_14' in kg_map and kg_map['PCR_14'] == measurements['PCR_14'
 relearn = True

 compute = googleapiclient.discovery.build('compute', 'beta',
 cache_discovery=False)

 instance_id = log_entry['resource']['labels']['instance_id']
 project_id = log_entry['resource']['labels']['project_id']
 zone = log_entry['resource']['labels']['zone']

 instance_name = instance_id_to_instance_name(compute, zone, project_id, in

 if not relearn:
 # Issue shutdown API call.
 print('New measurement is not known good. Shutting down a VM.')

 result = compute.instances().stop(project=project_id,
 zone=zone,
 instance=instance_name).execute()

 print('Instance %s in project %s has been scheduled for shut down.'
 % (instance_name, project_id))

1/23/2020 Automating responses to integrity validation failures | Documentation | Google Cloud

https://cloud.google.com/security/shielded-cloud/automating-responses-integrity-failures 10/12

2. Copy the following dependencies and use them to overwrite the existing code in
requirements.txt:

3. Open a terminal window and navigate to the directory containing main.py and
requirements.txt.

4. Run the gcloud beta functions deploy command
 (https://cloud.google.com/sdk/gcloud/reference/beta/functions/deploy) to deploy the trigger:

replacing YOUR_PROJECT_ID with the ID of your project.

5. Manually delete the previous shutdown_vm function in the cloud function console.

6. GO TO CLOUD FUNCTIONS (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/FUNCTIONS)

7. Select the shutdown_vm function and click delete.

Verify the automated responses to integrity validation failures

 else:
 # Issue relearn API call.
 print('New measurement is known good. Relearning...')

 result = compute.instances().setShieldedInstanceIntegrityPolicy(
 project=project_id,
 zone=zone,
 instance=instance_name,
 body={'updateAutoLearnPolicy':True}).execute()

 print('Instance %s in project %s has been scheduled for relearning.'
 % (instance_name, project_id))

google-api-python-client==1.6.6
google-auth==1.4.1
google-auth-httplib2==0.0.3
google-cloud-firestore==0.29.0
firebase-admin==2.13.0

gcloud beta functions deploy relearn_if_known_good --project YOUR_PROJECT_ID \
 --runtime python37 --trigger-resource integrity-monitoring \
 --trigger-event google.pubsub.topic.publish

https://cloud.google.com/sdk/gcloud/reference/beta/functions/deploy
https://console.cloud.google.com/functions

1/23/2020 Automating responses to integrity validation failures | Documentation | Google Cloud

https://cloud.google.com/security/shielded-cloud/automating-responses-integrity-failures 11/12

1. First, check if you have a running instance with Secure Boot turned on as a Shielded VM
option. If not, you can create a new instance with Shielded VM image (Ubuntu 18.04LTS)
and turn on the Secure Boot option. You may be charged a few cents for the instance
(this step can be �nished within an hour).

2. Now, assume for some reason, you want to manually upgrade the kernel.

3. SSH into the instance, and use the following command to check the current kernel.

You should see something like Linux 4.15.0-1028-gcp.

4. Download a generic kernel from https://kernel.ubuntu.com/~kernel-ppa/mainline/

5. Use the command to install.

6. Reboot the VM.

7. You should notice the VM is not booting up (cannot SSH into the machine). This is what
we expect, because the signature of the new kernel is not in our Secure Boot whitelist.
This also demonstrates how Secure Boot can prevent an unauthorized/malicious kernel
modi�cation.

8. But because we know this time the kernel upgrading is not malicious and is indeed done
by ourself, we can turn off Secure Boot in order to boot the new kernel.

9. Shutdown the VM and untick the Secure Boot option, then restart the VM.

10. The boot of the machine should fail again! But this time it is being shutdown
automatically by the cloud function we created as the Secure Boot option has been
altered (also because of the new kernel image), and they caused the measurement to be
different than the baseline. (We can check that in the cloud function's Stackdriver log.)

11. Because we know this is not a malicious modi�cation and we know the root cause, we
can add the current measurement in lateBootReportEvent to the known good
measurement Firebase table. (Remember there are two things being changed: 1. Secure
Boot option 2. Kernel Image.)

Follow the previous step Creating a database of known good baseline measurements
to append a new baseline to the Firestore database using the actual measurement in the
latest lateBootReportEvent.

uname -sr

sudo dpkg -i *.deb

1/23/2020 Automating responses to integrity validation failures | Documentation | Google Cloud

https://cloud.google.com/security/shielded-cloud/automating-responses-integrity-failures 12/12

12. Now reboot the machine. When you check the Stackdriver log, you will see the
lateBootReportEvent still showing false, but the machine should now boot successfully,
because the cloud function trusted and relearned the new measurement. We can verify it
by checking the Stackdriver of the cloud function.

13. With Secure Boot being disabled, we can now boot into the kernel. SSH into the machine
and check the kernel again, you will see the new kernel version.

14. Finally, let's clean up the resources and the data used in this step.

15. Shutdown the VM if you created one for this step to avoid additional charge.

16.

GO TO THE VM INSTANCES PAGE (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/COMPUTE/INSTANCES)

17. Remove the known good measurements you added in this step.

18. GO TO THE FIRESTORE CONSOLE (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/FIRESTORE/DATA)

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License
 (https://creativecommons.org/licenses/by/4.0/), and code samples are licensed under the Apache 2.0 License
 (https://www.apache.org/licenses/LICENSE-2.0). For details, see our Site Policies
 (https://developers.google.com/terms/site-policies). Java is a registered trademark of Oracle and/or its a�liates.

Last updated December 26, 2019.

uname -sr

https://console.cloud.google.com/compute/instances
https://console.cloud.google.com/firestore/data
https://creativecommons.org/licenses/by/4.0/
https://www.apache.org/licenses/LICENSE-2.0
https://developers.google.com/terms/site-policies

