
1/25/2020 Automated image builds with Jenkins, Packer, and Kubernetes | Solutions | Google Cloud

https://cloud.google.com/solutions/automated-build-images-with-jenkins-kubernetes 1/20

Solutions Solutions

Creating custom images to boot your Compute Engine instances or Docker containers can
reduce boot time and increase reliability. By pre-installing software into a custom image, you
can also reduce your dependency on the availability of 3rd party repositories that are out of
your control.

You choose how much software and con�guration to include in your custom images. On one
end of the spectrum, a minimally-con�gured image—referred to as a foundation image in this
document—contains a base OS image (like Ubuntu 14.10) and might also include basic
software and con�guration. For example, you can pre-install language runtimes like Java or
Ruby, con�gure remote logging, or apply security patches. A foundation image provides a
stable baseline image that can be further customized to serve an application.

At the other end of the spectrum, a fully-con�gured image—referred to as an immutable image
in this document—contains not only a base OS or foundation image, but also everything
required to run an application. Runtime con�guration, such as database connection
information or sensitive data, can be included in the image, or it can be provided via the
environment, metadata, or key management service at launch time.

The process of building images has a lot in common with building software: you have code
(Chef, Puppet, bash, etc.) and the people who write it; a build happens when you apply the
code to a base image; a successful build process outputs an artifact; and you often want to
put the artifact through some tests. Many of the best practices that apply to building software
also apply to images: you can version control to manage image con�guration scripts; trigger
builds when changes are made to those scripts; perform image builds automatically; and
version and even test the resulting image artifacts when builds complete.

 (https://cloud.google.com/solutions/)

Automated image builds with Jenkins, Packer,
and Kubernetes

https://cloud.google.com/solutions/
https://cloud.google.com/solutions/

1/25/2020 Automated image builds with Jenkins, Packer, and Kubernetes | Solutions | Google Cloud

https://cloud.google.com/solutions/automated-build-images-with-jenkins-kubernetes 2/20

What you will learn

In this solution you will learn about two general approaches to building custom images and
how to use several popular open source tools—including Jenkins, Packer, Docker, and
Kubernetes—to create an automated pipeline to continuously build images. This pipeline
integrates with the Cloud Source Repositories in Google Cloud Platform (GCP) and outputs
both Compute Engine images as well as Docker images.

You will learn how to build both foundation and immutable images and learn best practices
for managing access to these images across multiple projects in GCP. Finally, a
comprehensive tutorial at the end of the document lets you deploy and use an open-source,
reference implementation of the solution.

Image types

In the Scalable and resilient web applications
 (https://cloud.google.com/solutions/scalable-and-resilient-apps) solution, a Ruby on Rails web
application is used as a reference for running web applications on GCP. The source code for
that solution (https://github.com/GoogleCloudPlatform/scalable-resilient-web-app) does not use
customized images; when a Compute Engine instance boots, a startup script installs Chef Solo
which then installs everything required to run the application. This includes nginx, Ruby 2, cURL
and other system tools, Unicorn, the Rails app and all of its gems, imagemagick, and the app
con�g.

The following diagram describes the boot process.

https://cloud.google.com/solutions/scalable-and-resilient-apps
https://github.com/GoogleCloudPlatform/scalable-resilient-web-app

1/25/2020 Automated image builds with Jenkins, Packer, and Kubernetes | Solutions | Google Cloud

https://cloud.google.com/solutions/automated-build-images-with-jenkins-kubernetes 3/20

The process isn’t fast, taking 10-15 minutes for each instance to boot depending on the
download speed of the various repositories required for the packages—and that’s assuming
every repository hosting those packages is online and available. In the following sections, you
will consider how a foundation image and immutable image could improve the performance
and reliability of the instance boot process.

Foundation images

When creating a foundation image, you decide which software and packages to include in the
image. Here are a few things to consider when making that decision:

Installation Speed. Big packages can be slow to download; software that has to be built
from source can be time consuming; and packages with many dependencies compound
the problem. Consider including these types of software and packages in your foundation
image.

Reliability of Remote Repository. If you don't include the software in your foundation
image and instead download it at boot time, do you trust the availability of the remote
repository? If that repository is unavailable during boot, will it prevent your application
from functioning? To reduce your reliance on remote repositories that may be out of your
control, consider including critical dependencies in a foundation image.

Rate of Change. Does the software or package change very frequently? If so, consider
leaving it out of a foundation image and instead storing it in a reliable, accessible
location like a Cloud Storage bucket.

Required or Security Mandated. If certain packages (like logging, OSSEC, etc) are
mandated to run—with a speci�c con�guration—on every instance in your organization,
those packages should be installed in a foundation image that all other images extend. A
security team may use a more advanced tool like Chef or Puppet to build a Docker
foundation image, while downstream developers could use a Docker�le to easily extend
the foundation.

These criteria suggest that a foundation image for the Ruby on Rails application from the
Scalable and Resilient Web Applications solution could include Chef Solo, nginx, Ruby, cURL
and other system tools, and Unicorn. The other dependencies would be installed at boot time.

The following diagram describes the boot process with a foundation image:

1/25/2020 Automated image builds with Jenkins, Packer, and Kubernetes | Solutions | Google Cloud

https://cloud.google.com/solutions/automated-build-images-with-jenkins-kubernetes 4/20

The functional instance in this example retrieves its con�guration (for example, database
connection string, API keys, etc.) from the Compute Engine metadata service
 (https://cloud.google.com/compute/docs/metadata). You may choose to use different service like
etcd (https://github.com/coreos/etcd) or a simple Cloud Storage bucket to manage con�guration.

Upcoming sections focus on the tools used to automate the build of the Ruby Foundation
Image pictured here.

Immutable images

Unlike a foundation image, an immutable image has all of its software included on the image.
When an instance or container is launched from the image, there are no packages to download
or software to install. An immutable image for the Ruby on Rails application from the Scalable
and Resilient Web Applications solution would include all software, and the instance would be
ready to serve tra�c when booted.

https://cloud.google.com/compute/docs/metadata
https://github.com/coreos/etcd

1/25/2020 Automated image builds with Jenkins, Packer, and Kubernetes | Solutions | Google Cloud

https://cloud.google.com/solutions/automated-build-images-with-jenkins-kubernetes 5/20

Con�guration and immutable images

You can choose to have your application access the con�guration data it needs from a
con�guration service or you can include all con�guration in the immutable image. If you
choose the latter approach, be sure to consider the security implications of including secrets in
your images. If you are pushing immutable images to public repositories in the Docker Hub,
they are accessible to everyone and should not contain any sensitive or secret information.

Immutable images as the unit of deployment

Using immutable images as your unit of deployment eliminates the possibility of con�guration
drift, where one or more instances is in a different state than expected. For example, this can
happen when you apply a security patch to 100 running containers and some of them fail to
update. The image becomes what you deploy when any change is made. If the OS requires a
software patch or the logging con�guration should be updated, you build a new image to
include those changes and roll it out by launching new instances or containers and replacing all
old ones. If you choose to bundle application con�guration in an immutable image, even a
simple change like updating a database connection string means creating and releasing a new
image.

Architecture and implementation of an automated image building
pipeline

This section includes implementation details of an automated image building pipeline that
uses Jenkins, Packer, Docker, and Google Kubernetes Engine (GKE) to automatically build
custom images. Each section includes an introduction, architecture diagram, and detailed
analysis of the components in that diagram.

So�ware and services used

These software and services are used to create the automated image builder.

Software Use

1/25/2020 Automated image builds with Jenkins, Packer, and Kubernetes | Solutions | Google Cloud

https://cloud.google.com/solutions/automated-build-images-with-jenkins-kubernetes 6/20

Software Use

Jenkins Jenkins is a popular open source continuous integration (CI) server. You'll use
Jenkins to poll Git repositories in other projects that contain image con�guration
scripts, then to build images based on those repositories.

Packer Packer is a tool for creating identical machine images for multiple platforms from
a single source con�guration. It supports many different con�guration sources
including Shell, Chef, Puppet, Ansible, and Salt, and can output images for
Compute Engine, Docker, and others. Packer is used by Jenkins agents to build
images from con�guration in Git repositories.

Docker Docker is an open source tool for packaging and deploying applications as
containers. The Jenkins deployment (including the leader node and build agents)
in this architecture and tutorial are deployed as Docker containers. The build
agents also output Docker images as one of their architectures.

GKE GKE, powered by the open source technology Kubernetes, enables you to run and
manage Docker containers on GCP virtual machines.

Container Registry Container Registry provides secure, private Docker image storage on GCP. It runs
on GCP and is accessed through an HTTPS endpoint.

Compute Engine GKE uses Compute Engine VMs to run Kubernetes and to host the Jenkins leader
and build-agent containers. The Jenkins build process also outputs Compute
Engine VM images in addition to Docker images.

Cloud Storage You'll use Cloud Storage to store backups of your Jenkins con�guration.

Nginx Nginx provides reverse proxy functionality; forwarding incoming requests to the
Jenkins leader web interface. It can be con�gured to terminate SSL connections
and provide basic authentication.

Image builder overview

The following diagram shows how various components interact to create a system that
automatically builds VM and Docker images.

1/25/2020 Automated image builds with Jenkins, Packer, and Kubernetes | Solutions | Google Cloud

https://cloud.google.com/solutions/automated-build-images-with-jenkins-kubernetes 7/20

You de�ne a job on the Jenkins leader for each image you want to build. The job polls a source
code repository, Git in this illustration, that contains con�guration scripts and a Packer template
describing how to build an image. When the polling process detects a change, the Jenkins
leader assigns the job to a build agent. The agent uses Packer to run the build, which outputs a
Docker image to the Container Registry and a VM image to Compute Engine.

Packer and con�guration scripts

A Packer template and associated con�guration scripts together de�ne how to build an image.
They are treated like software and stored in their own Git repository. Each image you build will
have its own repository with a Packer template and con�g scripts.

This section provides an overview of one possible Packer con�guration that uses Chef to
customize Ubuntu 14.04 by adding Ruby and rbenv. For complete coverage of Packer, check out
its excellent documentation at https://www.packer.io/docs (https://www.packer.io/docs).

Image naming and packer variables

The image builder builds an image any time a change is made to the Git repository containing
the image’s Packer template and con�g scripts. It's a good idea to name or tag images with the

https://www.packer.io/docs

1/25/2020 Automated image builds with Jenkins, Packer, and Kubernetes | Solutions | Google Cloud

https://cloud.google.com/solutions/automated-build-images-with-jenkins-kubernetes 8/20

Git branch and commit ID from which they were built. Packer templates allow you to de�ne
variables and provide values for them at runtime:

The Jenkins build agent can �nd the Git branch and commit ID and provide them as variables
to the Packer command line tool. You’ll see this in action later in the tutorial section of this
document.

Programmatic con�guration with provisioners

A Packer template de�nes one or more provisioners that describe how to use a tool like Chef,
Puppet, or shell scripts to con�gure an instance. Packer supports many provisioners; see the
table of contents in the Packer documentation (https://www.packer.io/docs) for a complete list.
This snippet de�nes a chef-solo provisioner with cookbook paths and recipes to run to
con�gure an image:

{
...
 "variables": {
 "Git_commit": "",
 "Git_branch": "",
 "ruby_version_name": "212",
 "project_id": "null"
 }
...
}

 

{
 ...
 "provisioners": [
 {
 "type": "chef-solo",
 "install_command": "apt-get install -y curl && curl -L https://www.opscode.com
 "cookbook_paths": ["chef/site-cookbooks"],
 "run_list": [{{
 "recipe[ruby]",
 "recipe[ruby::user]",
 "recipe[ruby::ruby212]"
]
 }
],
 ...
}

 

https://www.packer.io/docs

1/25/2020 Automated image builds with Jenkins, Packer, and Kubernetes | Solutions | Google Cloud

https://cloud.google.com/solutions/automated-build-images-with-jenkins-kubernetes 9/20

The chef cookbook and recipes are stored in the same Git repository as the Packer template.

De�ning image outputs with builders

The builders section of the template de�nes where provisioners will run to create new images.
To build both a Compute Engine image and a Docker image, de�ne two builders:

The googlecompute builder includes a project_id attribute that indicates where the resulting
image will be stored. The image_name attribute, which assigns a name to the resulting image,
concatenates variables to create a name with information about the image: the version of Ruby,
the Git branch, and the Git commit ID that was used to build the image. A sample URI for an
image created by the googlecompute builder can look like the following:

The docker builder should include a post-processors attribute to tag the image with the Docker
registry and repository it will be pushed to:

{
 "variables": {...},
 "provisioners": [...],
 "builders": [
 {
 "type": "googlecompute",
 "project_id": "{{user `project_id`}}",
 "source_image": "ubuntu-1410-utopic-v20150202",
 "zone": "us-central1-a",
 "image_name": "{{user `ruby_version_name`}}-{{user `Git_branch`}}-{{user `Git_
 },
 {
 "type": "docker",
 "image": "ubuntu:14.10",
 "commit": "true"
 }
],
 ...
}

 

https://www.googleapis.com/compute/v1/projects/image-builder-project-name/global/ima 

{
 "variables": {...},
 "provisioners": [...],

 

1/25/2020 Automated image builds with Jenkins, Packer, and Kubernetes | Solutions | Google Cloud

https://cloud.google.com/solutions/automated-build-images-with-jenkins-kubernetes 10/20

This post-processor will tag the image for storage in Container Registry using the project_id
provided when the build is run. After this Docker image is pushed, you could retrieve it:

Each image you want to build will have a Packer template and con�g scripts in its own source
repository, and the Jenkins leader will have a job de�ned for each, as shown in the following
diagram.

 "builders": [...],
 "post-processors": [
 [
 {
 "type": "docker-tag",
 "repository": "gcr.io/{{user `project_id`}}/ruby212",
 "tag": "{{user `Git_branch`}}-{{user `Git_commit`}}",
 "only": ["docker"]
 }
]
]
}

docker pull gcr.io/image-builder-project-name/ruby212:master-9909043  

1/25/2020 Automated image builds with Jenkins, Packer, and Kubernetes | Solutions | Google Cloud

https://cloud.google.com/solutions/automated-build-images-with-jenkins-kubernetes 11/20

One advantage of using Jenkins and Packer together is that Jenkins can detect and respond to
any updates you make to your Packer templates or con�guration scripts. For example, if you
update the version of Ruby installed in your Ruby Foundation Image, the Jenkins leader
responds by assigning an agent to clone the repository, run Packer against the template, and
build the images.

The tutorial at the end of this solution will cover in detail the process of con�guring a Jenkins
job to execute the Packer build.

Project isolation

The Jenkins leader and build agents run together in the same Cloud Platform project, and the
images they create are stored in this project. Projects allow you to isolate applications by
function. There is no charge for a project; you are only charged for the resources you use. In this
solution the Jenkins infrastructure will run in its own project, separated from the source control
repositories it uses. Jenkins backups—discussed in an upcoming section—are stored in a
Google Cloud Storage bucket inside the project. This allows Jenkins to act as an "image hub",
sharing images out to other projects, while allowing other projects to maintain their own code
repositories with separate access controls.

Building and sharing images across an organization

To facilitate the sharing of images, this solution places each build image stored in Git into a
separate image con�guration project. This separation provides project isolation between the
image builder project and the build images. With this hub-and-spoke architecture, where the
image builder project is the hub and the image con�guration projects are the spokes, separate
teams can more easily own and manage the image con�gurations.

This hub-and-spoke architecture is illustrated in the following diagram.

1/25/2020 Automated image builds with Jenkins, Packer, and Kubernetes | Solutions | Google Cloud

https://cloud.google.com/solutions/automated-build-images-with-jenkins-kubernetes 12/20

Access control (granting the Jenkins cluster access to each image project, and granting other
projects access to the images built by Jenkins) will be discussed below.

One project per image

Each project you create has a dedicated Git-based Cloud Repository. There is no limit to the
number of projects you create, and you only pay for the resources, such as Compute Engine
instances, that you use in a project. For example, if you have PHP, Ruby, and Wordpress images,
each would have its own project visible in the Google Cloud Platform Console, as shown in the
following diagram.

1/25/2020 Automated image builds with Jenkins, Packer, and Kubernetes | Solutions | Google Cloud

https://cloud.google.com/solutions/automated-build-images-with-jenkins-kubernetes 13/20

A project's Cloud Repository is accessible from the Source Code menu item. For new projects,
you choose how to initialize the repository: you can mirror an existing GitHub or Bitbucket
repository, push an existing local Git repository, or create a new local Git repository from Cloud
Source Repositories, as shown in the following image.

The following image shows the Ruby Foundation Image project initialized with a Packer
template and Chef recipes de�ning the build.

1/25/2020 Automated image builds with Jenkins, Packer, and Kubernetes | Solutions | Google Cloud

https://cloud.google.com/solutions/automated-build-images-with-jenkins-kubernetes 14/20

To view the URL for the repository, click Settings. You'll need this URL when creating a build job
for the repository on the Jenkins leader, as shown in the following image.

Cloud repository access control

The Jenkins image builder needs Can view permissions to each image con�guration project's
Cloud Repository. The following diagram shows a simpli�ed view of the hub-and-spoke
architecture shown earlier.

1/25/2020 Automated image builds with Jenkins, Packer, and Kubernetes | Solutions | Google Cloud

https://cloud.google.com/solutions/automated-build-images-with-jenkins-kubernetes 15/20

Each project must grant access to the Jenkins image builder project using the image builder
project’s compute service account email address. That address format is \{PROJECT_ID\}-
compute@developer.gserviceaccount.com and is available to copy in the Permissions section
of that project in the GCP Console, as shown in the following image.

After you have the compute service account email address for the project running the Jenkins
image builder, go to the Permissions section of each project with a Cloud Repository that you

1/25/2020 Automated image builds with Jenkins, Packer, and Kubernetes | Solutions | Google Cloud

https://cloud.google.com/solutions/automated-build-images-with-jenkins-kubernetes 16/20

want to build images from, select Add Member, and grant Can view permission, as shown in
the following image.

The Jenkins leader running in the image builder project will now be able to poll and pull from
the Cloud Repository in these projects, and build new images as changes are committed.

Sharing Compute Engine and Docker images

The Compute Engine and Docker images created by the image builder are stored in the same
project as the image builder. The images will be used by applications in other projects to launch
Compute Engine instances and Docker containers, and each application project that wishes to
access these images must have Can view permission to the image builder project. Follow the
process de�ned in the previous section, this time locating the compute service account of each
application project and adding it as a member with Can view permissions to the image builder
project, as shown in the following diagram.

1/25/2020 Automated image builds with Jenkins, Packer, and Kubernetes | Solutions | Google Cloud

https://cloud.google.com/solutions/automated-build-images-with-jenkins-kubernetes 17/20

Jenkins backup and restore

The Jenkins leader includes a pre-de�ned job for periodic backup of the Jenkins con�guration
and job history to Google Cloud Storage. By default the job runs periodically (once every two
hours, every weekday), as shown in the following image.

The build step of the job executes a shell script that archives secrets, users, jobs, and history
into a tarball. There are two copies of the archive created: one is named with a date stamp, the
other is named LATEST, allowing you to easily and automatically restore the most recent
backup. You can customize this step to add or remove items to be backed up, as shown in the
following image.

1/25/2020 Automated image builds with Jenkins, Packer, and Kubernetes | Solutions | Google Cloud

https://cloud.google.com/solutions/automated-build-images-with-jenkins-kubernetes 18/20

A post-build action uses the Cloud Storage plugin and Google metadata credential you created
to interact with Google APIs and upload the backup archive to Cloud Storage. It uploads both
the datestamp and LATEST archives. The following image shows the step de�nition.

The following image shows a bucket with some backups that have accumulated:

Restoring a backup

In the same way that you use environment variables to enable SSL or basic auth on the Nginx
reverse proxy (#enabling_ssl_or_basic_access_authentication) in an earlier section, you can use an
environment variable to con�gure the Jenkins leader’s replication controller de�nition so that it

1/25/2020 Automated image builds with Jenkins, Packer, and Kubernetes | Solutions | Google Cloud

https://cloud.google.com/solutions/automated-build-images-with-jenkins-kubernetes 19/20

restores a backup when the service starts. The following code is a snippet from the replication
controller’s de�nition:

The Jenkins leader Docker image checks for the existence of the GCS_RESTORE_URL environment
variable when it starts. If found, the value is assumed to be the URL of the backup (including
the gs:// scheme) and the script uses the gsutil command line tool that is installed on the
Jenkins leader image to securely download and restore the backup.

The restore process only happens when a container is launched. To restore a backup after
you’ve launched a Jenkins leader, resize its replication controller to 0, update the de�nition of
the controller to point to the URL of the backup, then set the size back to 1. This is covered in
the tutorial.

Tutorial

The complete contents of the tutorial, including instructions and source code, are available on
GitHub at https://github.com/GoogleCloudPlatform/kube-jenkins-imager

{
 "kind": "ReplicationController",
 ...
 "spec": {
 ...
 "template": {
 "spec": {
 "containers": [
 {
 "name": "jenkins",
 "env": [
 {
 "name": "GCS_RESTORE_URL",
 "value": "gs://your-backup-bucket/jenkins-backup/LATEST.tar.gz"
 }
],
 ...
 }
]
 }
 }
 }
}

 

https://github.com/GoogleCloudPlatform/kube-jenkins-imager

1/25/2020 Automated image builds with Jenkins, Packer, and Kubernetes | Solutions | Google Cloud

https://cloud.google.com/solutions/automated-build-images-with-jenkins-kubernetes 20/20

 (https://github.com/GoogleCloudPlatform/kube-jenkins-imager).

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License
 (https://creativecommons.org/licenses/by/4.0/), and code samples are licensed under the Apache 2.0 License
 (https://www.apache.org/licenses/LICENSE-2.0). For details, see our Site Policies
 (https://developers.google.com/terms/site-policies). Java is a registered trademark of Oracle and/or its a�liates.

Last updated October 3, 2019.

https://github.com/GoogleCloudPlatform/kube-jenkins-imager
https://creativecommons.org/licenses/by/4.0/
https://www.apache.org/licenses/LICENSE-2.0
https://developers.google.com/terms/site-policies

