
1/25/2020 Automating Canary Analysis on Google Kubernetes Engine with Spinnaker

https://cloud.google.com/solutions/automated-canary-analysis-kubernetes-engine-spinnaker/ 1/17

This tutorial guides you through con�guring the automated canary analysis feature of Spinnaker on Google Kubernetes Engine
 (/kubernetes-engine/) (GKE).

Spinnaker is an open source, continuous delivery system led by Net�ix and Google to manage the deployment of apps on different computing
platforms, including App Engine, GKE, Compute Engine, AWS, and Azure. Using Spinnaker, you can implement advanced deployment methods,
including canary deployments.

In a canary deployment, you expose a new version of your app to a small portion of your production tra�c and analyze its behavior before
going ahead with the full deployment. This lets you mitigate risks before deploying a new version to all of your users. To use canary
deployments, you must accurately compare the behavior of the old and new versions of your app. The differences can be subtle and might take
some time to appear. You might also have a lot of different metrics to examine.

To solve those problems, Spinnaker has an automated canary analysis feature: it reads the metrics of both versions from your monitoring
system and runs a statistical analysis to automate the comparison. This tutorial shows you how to do an automated canary analysis on an
app deployed on GKE and monitored by Stackdriver Monitoring (/monitoring/).

Spinnaker is an advanced app deployment and management platform for organizations with complex deployment scenarios, often with a
dedicated release engineering function. You can run this tutorial without prior Spinnaker experience. However, implementing automated canary
analysis in production is generally done by teams that already have Spinnaker experience, a strong monitoring system, and that know how to
determine if a release is safe.

The app in this tutorial is a simple "Hello World" whose error rate is con�gured with an environment variable. A pre-built Docker image for this
app is provided. As illustrated in the following image, the app exposes metrics in the Prometheus (https://prometheus.io/) format, an open source
monitoring system popular in the Kubernetes community, and compatible with Monitoring.

https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/monitoring/
https://prometheus.io/


1/25/2020 Automating Canary Analysis on Google Kubernetes Engine with Spinnaker

https://cloud.google.com/solutions/automated-canary-analysis-kubernetes-engine-spinnaker/ 2/17

Google Kubernetes Engine cluster

default namespace

prod

baseline

canary

sampleapp vN

sampleapp vN

sampleapp vN

sampleapp vN

sampleapp vN

sampleapp vN+1

stackdriver namespace

spinnaker namespace

Stackdriver

Pushes metrics

Reads metricsdeploys

Prometheus

Spinnaker

Install Spinnaker for Google Cloud.

Deploy an app to GKE without a canary deployment.

Con�gure and run a canary deployment of the app.

Con�gure the automated canary analysis.

Test the automated canary analysis.

Important: This tutorial uses the following billable components of Google Cloud:

GKE

Monitoring

To generate a cost estimate based on your projected usage, use the pricing calculator (/products/calculator). New Google Cloud users might be eligible for a free

trial (/free-trial).

1. Select or create a Google Cloud project.

GO TO THE MANAGE RESOURCES PAGE (https://console.cloud.google.com/cloud-resource-manager)

2. Enable billing for your project.

https://cloud.google.com/products/calculator
https://cloud.google.com/free-trial
https://console.cloud.google.com/cloud-resource-manager


1/25/2020 Automating Canary Analysis on Google Kubernetes Engine with Spinnaker

https://cloud.google.com/solutions/automated-canary-analysis-kubernetes-engine-spinnaker/ 3/17





ENABLE BILLING (/billing/docs/how-to/modify-project)

3. Create a Workspace.

GO TO THE Monitoring DOCUMENTATION (/monitoring/accounts/guide#setup-account)

Note: This tutorial expects the Workspace to have the same name as the Google Cloud project you are using. You can use an existing Workspace in this

tutorial only if this is the case.

When you �nish this tutorial, you can avoid continued billing by deleting the resources you created. See Cleaning up (#clean-up) for more detail.

In this section, you con�gure the infrastructure required to complete the tutorial. Run all the terminal commands in this tutorial from Cloud
Shell.

Spinnaker for Google Cloud (https://cloud.google.com/docs/ci-cd/spinnaker/spinnaker-for-gcp) gives you a way to set up and manage Spinnaker in a
production-ready con�guration, optimized for Google Cloud. Spinnaker for Google Cloud sets up many resources (GKE, Memorystore, Cloud
Storage buckets and service accounts) required to run Spinnaker in Google Cloud, integrates Spinnaker with related services such as Cloud
Build, and provides a Cloud Shell-based management environment for your Spinnaker installations, with helpers and common tools such as
spin and hal.

Note: The installation takes several minutes to complete.

1. In Cloud Shell, open Spinnaker for Google Cloud. This clones the Spinnaker for Google Cloud repository
 (https://github.com/GoogleCloudPlatform/spinnaker-for-gcp.git) into your Cloud Shell environment and launches the detailed installation
instructions.

GO TO CLOUD SHELL (https://console.cloud.google.com/cloudshell/editor?cloudshell_git_repo=https://github.com/GoogleCloudPlatform/spinnaker-for-gcp

2. Install Spinnaker for Google Cloud:

Note: This installation command is only for the basic setup for this tutorial. For a production setup, follow the detailed instructions included with Spinnaker

for Google Cloud.

3. Install the Monitoring-Prometheus integration plugin (/monitoring/kubernetes-engine/prometheus):

4. Restart Cloud Shell to load new environment settings.

https://cloud.google.com/billing/docs/how-to/modify-project
https://cloud.google.com/monitoring/accounts/guide#setup-account
https://cloud.google.com/docs/ci-cd/spinnaker/spinnaker-for-gcp
https://github.com/GoogleCloudPlatform/spinnaker-for-gcp.git
https://console.cloud.google.com/cloudshell/editor?cloudshell_git_repo=https://github.com/GoogleCloudPlatform/spinnaker-for-gcp.git&cloudshell_working_dir=scripts/install&cloudshell_tutorial=provision-spinnaker.md&cloudshell_print=instructions.txt
https://cloud.google.com/monitoring/kubernetes-engine/prometheus


1/25/2020 Automating Canary Analysis on Google Kubernetes Engine with Spinnaker

https://cloud.google.com/solutions/automated-canary-analysis-kubernetes-engine-spinnaker/ 4/17



5. Connect to Spinnaker:

6. In Cloud Shell, select the Web Preview icon and select Preview on port 8080.

Note: For now, this Spinnaker instance isn't publicly accessible and only you have access to it, with no authentication. A production Spinnaker instance is a

critical component of your infrastructure, so you must properly secure it. Several options are available to you for security and authentication:

Spinnaker for Google Cloud provides tools
 (https://github.com/GoogleCloudPlatform/spinnaker-for-gcp/blob/master/scripts/install/provision-spinnaker.md#expose-spinnaker-publicly) to

help secure your deployment using IAP with a SSL Certi�cate.

Take a look at the security documentation  (https://www.spinnaker.io/setup/security/) of Spinnaker.

Use G Suite as an identity provider  (https://www.spinnaker.io/setup/security/authentication/oauth/google/) for Spinnaker authentication.

Use Google Groups  (https://www.spinnaker.io/setup/security/authorization/google-groups/) for Spinnaker authorization.

Con�gure a Identity-Aware Proxy (/iap/docs/enabling-kubernetes-howto) in front of Spinnaker to further control who has access to it.

https://github.com/GoogleCloudPlatform/spinnaker-for-gcp/blob/master/scripts/install/provision-spinnaker.md#expose-spinnaker-publicly
https://www.spinnaker.io/setup/security/
https://www.spinnaker.io/setup/security/authentication/oauth/google/
https://www.spinnaker.io/setup/security/authorization/google-groups/
https://cloud.google.com/iap/docs/enabling-kubernetes-howto


1/25/2020 Automating Canary Analysis on Google Kubernetes Engine with Spinnaker

https://cloud.google.com/solutions/automated-canary-analysis-kubernetes-engine-spinnaker/ 5/17



In this section, you con�gure Spinnaker to deploy an app in the GKE cluster.

Before you deploy, you create the Spinnaker app.

1. In Spinnaker, select Actions, and then select Create Application.

2. In the New Application dialog, enter the following values:

Name: sampleapp

Owner Email: [example@example.com]

Warning: The app must be named sampleapp for the rest of this tutorial to work.

3. Select Create.

You are now in the sampleapp of Spinnaker. It isn't con�gured yet, so most of the tabs are empty.

In this section, you �rst deploy the app with a simple Spinnaker pipeline that takes a successRate parameter to create a GKE Deployment with
four pods. Those pods throw errors randomly at a rate corresponding to the successRate parameter. In this tutorial, they throw 500 errors at a
rate of 100 - successRate.

1. In Cloud Shell, create the pipeline with the provided JSON �le. The following command posts the JSON de�nition of the pipeline directly
to the Spinnaker API.

2. In the Pipelines section of Spinnaker, a pipeline called Simple deploy appears. If you don't see it, reload the page. Select Start Manual
Execution.



1/25/2020 Automating Canary Analysis on Google Kubernetes Engine with Spinnaker

https://cloud.google.com/solutions/automated-canary-analysis-kubernetes-engine-spinnaker/ 6/17

3. In the Con�rm Execution window, select a Success Rate of 70, and then select Run. After a few seconds, the pipeline successfully
deploys the con�guration of the app and four pods.

4. In Cloud Shell, create a pod that makes requests to your new app until the end of the tutorial.

1. To see the behavior of the app, check the logs of the injector:

2. A high number of Internal Server Error messages appear in the logs. To stop following the logs of the injector, press Ctrl+C .

Now that your app is deployed and serves tra�c, see if it's behaving correctly. Of course, in this tutorial, you already know that it isn't because
you deployed the app with only a 70% success rate.

The app exposes a /metrics endpoint with metrics in the Prometheus format
 (/solutions/best-practices-for-operating-containers#metrics_http_endpoint) that are ingested by Monitoring. In this section, you visualize those metrics
in Monitoring.

1. In the Google Cloud Console, go to Monitoring.

Go to Monitoring (https://console.cloud.google.com/monitoring)

2. If Metrics Explorer is shown in the navigation pane, select

Metrics Explorer. Otherwise, select  Resources and then select Metrics Explorer.

3. Ensure Metric is the selected tab.

4. Select the box labeled Find resource type and metric, and enter external.googleapis.com/prometheus/requests.

5. To re�ne the graph, in the Group By �eld, enter http_code.

In the following graph, the rates of HTTP requests answered by the app are grouped by HTTP status code:

https://cloud.google.com/solutions/best-practices-for-operating-containers#metrics_http_endpoint
https://console.cloud.google.com/monitoring


1/25/2020 Automating Canary Analysis on Google Kubernetes Engine with Spinnaker

https://cloud.google.com/solutions/automated-canary-analysis-kubernetes-engine-spinnaker/ 7/17

If you don't have any data in Monitoring, or if you can't �nd the external.googleapis.com/prometheus/requests metric, wait a few
minutes for the data to be ingested by Monitoring before reloading Metrics Explorer.

As you can see in the graph, the app currently has an unacceptable error rate—around 30%, as expected. The rest of the tutorial guides
you through the setup of a canary deployment pipeline and an automatic analysis to prevent future deployments of an app with such a
high error rate.

In this section, you create a canary deployment pipeline, without automated analysis, to test the new version of the app before deploying it fully
to production. In the following image, different stages of this pipeline are outlined:

Step 0: Like in the Simple Deploy pipeline, the pipeline takes a Success Rate parameter as input. This new pipeline uses this parameter to
simulate different success rates. This is the Con�guration of the pipeline.

Step 1: The Find Baseline Version stage retrieves the current version of the app running in production from the latest execution of the
Simple Deploy pipeline. In this tutorial, it retrieves the success rate of the currently deployed app.

In parallel with the Find Baseline Version stage, the Deploy Canary Con�g stage deploys the new success rate con�guration for the canary
version of the app.



1/25/2020 Automating Canary Analysis on Google Kubernetes Engine with Spinnaker

https://cloud.google.com/solutions/automated-canary-analysis-kubernetes-engine-spinnaker/ 8/17



Step 2: The Deploy Canary and Deploy Baseline stages deploy the two versions for comparison, the new canary version and a baseline
version. The canary version uses the con�guration created in Deploy Canary Con�g whereas the baseline version uses the con�guration
used by the production version.

Note: Read Canary best practices

 (https://www.spinnaker.io/guides/user/canary/best-practices/#compare-canary-against-baseline-not-against-production) to �nd out why it’s best to

compare a canary to a baseline version and not directly to the instances running in production.

Step 3: The Manual Judgment stage stops the pipeline until you continue. During this stage, you can check if the canary version behaves
correctly.

Step 4: Once you continue past the Manual Judgment stage, both the Delete Canary and Delete Baseline stages clean up the
infrastructure.

In parallel with the cleanup, the Deploy to Production stage is launched and triggers the Simple Deploy pipeline with the same Success
Rate parameter that you gave initially. The same version of the app you tested in a canary is deployed in production.

The Deploy to Production stage is triggered only if you chose to continue during the Manual Judgment stage.

Step 5: Finally, the Successful Deployment stage validates that the whole pipeline is successful. It checks that you gave the go-ahead in
the Manual Judgment stage and only executes if the Deploy to Production, Delete Canary, and Delete Baseline stages executed
successfully.

Now, you can create and run the Canary Deploy pipeline.

1. To create the Canary Deploy pipeline, run the following command to fetch the ID of the Simple deploy pipeline and inject it into the
Canary Deploy pipeline:

2. If you don't see the Canary Deploy pipeline in Spinnaker, reload the sampleapp page, and select Pipelines.

3. To launch the Canary Deploy pipeline:

a. Select Start Manual Execution.

b. Select a Success Rate of 80.

c. Select Run.

4. When the pipeline reaches the Manual Judgment stage, don't select Continue yet because you need to compare the canary version with
the baseline version.

5. In Cloud Shell, run the kubectl -n default get pods command to see the new pods labeled canary and baseline:

https://www.spinnaker.io/guides/user/canary/best-practices/#compare-canary-against-baseline-not-against-production


1/25/2020 Automating Canary Analysis on Google Kubernetes Engine with Spinnaker

https://cloud.google.com/solutions/automated-canary-analysis-kubernetes-engine-spinnaker/ 9/17

6. In the Google Cloud Console, go to Monitoring.

Go to Monitoring (https://console.cloud.google.com/monitoring)

7. If Metrics Explorer is shown in the navigation pane, select

Metrics Explorer. Otherwise, select Resources and then select Metrics Explorer.

8. Ensure Metric is the selected tab.

9. To display the error rate for both the baseline and the canary, specifying the following parameters:

a. Metric: external.googleapis.com/prometheus/requests

b. Filters:

i. http_code equals 500

ii. version different (!=) from prod

If Monitoring is missing some data, wait a few minutes for it to appear.

10. Compare the canary version (purple in the following graph) with the baseline version (blue in the following graph). Colors might differ in
your graph. In this tutorial, the canary version has a lower error rate than the baseline version. Therefore, it is safe to fully deploy the
canary version to production. If the canary version didn't have a lower error rate, you might want to stop the deployment at this stage and
make some corrections to your app.

https://console.cloud.google.com/monitoring


1/25/2020 Automating Canary Analysis on Google Kubernetes Engine with Spinnaker

https://cloud.google.com/solutions/automated-canary-analysis-kubernetes-engine-spinnaker/ 10/17

11. In Spinnaker, in the Manual Judgement dialog, select Continue.

12. When the deployment is �nished, go back to Monitoring.

Go to Monitoring (https://console.cloud.google.com/monitoring)

13. If Metrics Explorer is shown in the navigation pane, select

Metrics Explorer. Otherwise, select  Resources and then select Metrics Explorer.

14. Ensure Metric is the selected tab.

15. Select the box labeled Find resource type and metric, and then select from the menu or enter the name for the resource and metric. Use
the following information to complete the �elds for this text box:

a. For the Metric, select or enter external.googleapis.com/prometheus/requests.

b. In the Group By �eld, enter http_code.

In the following graph, the rate of HTTP requests answered by the app is split by HTTP status code:

https://console.cloud.google.com/monitoring


1/25/2020 Automating Canary Analysis on Google Kubernetes Engine with Spinnaker

https://cloud.google.com/solutions/automated-canary-analysis-kubernetes-engine-spinnaker/ 11/17

This graph shows the rate of HTTP codes, 200 and 500, for all pods: production, baseline and canary. Because the canary version had a
lower error rate, you deployed it in production. After a short period of time during the deployment, where the total number of requests is
slightly lower, you can see that the overall error rate is lowered: the canary version has correctly been deployed in production.

A canary deployment is useful, but in its current implementation, it's a manual process. You have to manually check that the canary behaves as
you want before doing a full deployment, and the difference between canary and baseline isn't always clear.

Automating the canary analysis is a good idea: you don't have to do it yourself, and an automated statistical analysis is better suited than
humans to detect problems in a set of metrics. In this section, the Manual Judgement stage is replaced by an automated canary analysis.

Note: Canary analysis isn't designed to detect errors or failures. It detects the deviation of given metrics and makes sure that the behavior of the new version is

similar to the old version. Because you might be �ne with a speci�c metric increasing (or decreasing), you can say the increase or decrease of a metric is OK.

First, in Spinnaker you con�gure the automated canary analysis feature, called Kayenta
 (https://cloudplatform.googleblog.com/2018/04/introducing-Kayenta-an-open-automated-canary-analysis-tool-from-Google-and-Net�ix.html). To con�gure
Kayenta, use Halyard, the same tool used to con�gure and deploy Spinnaker.

1. Con�gure Kayenta to use Monitoring as a backend:

2. Apply the new con�guration:

The deployment takes a few minutes to complete.

https://cloudplatform.googleblog.com/2018/04/introducing-Kayenta-an-open-automated-canary-analysis-tool-from-Google-and-Netflix.html


1/25/2020 Automating Canary Analysis on Google Kubernetes Engine with Spinnaker

https://cloud.google.com/solutions/automated-canary-analysis-kubernetes-engine-spinnaker/ 12/17

Now that Kayenta is enabled, con�gure it for sampleapp.

1. In Spinnaker, select Con�g.

2. In the Features section, select Canary, and then select Save Changes.

In Spinnaker, an automated canary analysis runs a statistical test on different metrics and outputs a score. This score can range from 0 to 100
and represents the number of metrics that pass or fail the comparison between the baseline and the canary. You can in�uence the score, by
placing metrics in different groups, with different weights for each group. Depending on the score of the analysis, you might want to go ahead
with the deployment or not. If you use a single metric—like in this tutorial—the score can only be 0 (fail) or 100 (pass).

An app can have several canary con�gurations that can be shared across several apps. A canary con�guration has two main elements:

A set of metrics to analyze (possibly in different groups).

Marginal and pass thresholds for the score.

In a deployment pipeline, a canary con�guration is used during the Canary Analysis stage. This stage can include several canary runs. If the
score of any run is below the marginal threshold, the stage is stopped and the other runs are not executed. The last run's score needs to be
above the pass threshold for the whole stage to be considered successful.

To create a canary con�guration, follow these steps:

1. Now that canary is enabled, the Pipelines section is replaced with Delivery (if you don't see the Delivery section, reload Spinnaker). In the
Delivery section, go to Canary Con�gs.

2. Select Add Con�guration.

3. For Con�guration Name, enter kayenta-test.

4. In the Metrics section, select Add Metric.

5. In the Add Metric dialog, enter the following values, and then select OK:

Name: error_rate

Fail on: increase

Resource Type: k8s_container

Metric type: external.googleapis.com/prometheus/requests

Aligner: ALIGN_RATE



1/25/2020 Automating Canary Analysis on Google Kubernetes Engine with Spinnaker

https://cloud.google.com/solutions/automated-canary-analysis-kubernetes-engine-spinnaker/ 13/17



Filter Template: Choose Create new.

For the Name of the new Filter Template, enter: http_code

For the Template of the new Filter Template, enter: metric.labels.http_code = "500" AND resource.label.pod_name =
starts_with("${scope}")

Select Save

Note: The Aligner is a parameter of the Stackdriver Monitoring API that compares the rate of change of the metrics rather than their absolute value. The app

in this tutorial exposes the total number of errors since it started as a metric. Kayenta needs to compare if the rate of those errors changes between two

versions of the app.

6. In the Scoring section set Group 1 to 100.

7. Select Save Changes.

Now that you have a canary con�guration, modify your existing deployment pipeline to replace the Manual Judgment stage with a Canary
Analysis stage that uses this con�guration.

Note: If you make a mistake in this section and you can't recover from it, use the commands listed in the tutorial's repository

 (https://github.com/spinnaker/spinnaker/tree/master/solutions/kayenta#create-the-automated-canary-deploy-pipeline).

1. Go to Delivery > Pipelines, and for the Canary Deploy pipeline, select Con�gure.

2. Select Add Stage.

3. For Type, select Canary Analysis.

4. In the Depends On section, modify your new stage to depend on the following selections:

Deploy Canary

Deploy Baseline

5. Fill in the Canary Analysis Con�guration section with the following values:

Parameter name Value De�nition

Analysis Type Real Time (Manual) The automatic mode, where canary and baseline are created for you, is not yet available for Kubernetes.

https://github.com/spinnaker/spinnaker/tree/master/solutions/kayenta#create-the-automated-canary-deploy-pipeline


1/25/2020 Automating Canary Analysis on Google Kubernetes Engine with Spinnaker

https://cloud.google.com/solutions/automated-canary-analysis-kubernetes-engine-spinnaker/ 14/17



Parameter name Value De�nition

Con�g Name kayenta-test The name of the canary con�guration you created earlier.

Lifetime 0 hours 5 minutes How long the canary analysis should last.

Delay 0 The time we give to the app to warm up before doing the analysis.

Interval 5 The time window Kayenta should use to run a single statistical analysis.

Baseline sampleapp-baseline The GKE Deployment Kayenta should use as baseline.

Baseline Location default The GKE namespace in which the baseline lives.

Canary sampleapp-canary The GKE Deployment Kayenta should use as canary.

Canary Location default The GKE namespace in which the canary lives.

Marginal 75 The threshold score for a marignal canary pass.

Pass 95 The threshold score for an overall canary pass.

Note: A canary analysis is composed of several canary runs. A canary run has two parts: a time window—de�ned by the interval parameter—during which

metrics are gathered, and an actual statistical analysis of those metrics. Kayenta makes as many runs as possible in the lifetime you provide. For example, if

you con�gure an interval of �ve minutes and a lifetime of one hour, Kayenta makes 12 canary runs. For more information on the right settings for those

parameters, see Canary best practices (https://www.spinnaker.io/guides/user/canary/best-practices/#some-con�guration-values-to-start-with).

6. In the Execution Options section, select Ignore the failure. You ignore the failure so you can destroy the baseline and the canary even if
the canary analysis failed. Later in the tutorial, you modify the stages to take a potential canary failure into account.

7. In the pipeline's schema, select Deploy to Production.

8. Change the Depends On section, to the following parameters:

a. Add Canary Analysis.

b. Remove Manual Judgment.

9. To ensure that you deploy to production only if the canary analysis succeeds, change the Conditional on Expression parameter.

10. In the pipeline's schema, select Delete Canary, and change the Depends On section to the following parameters:

a. Add Canary Analysis.

b. Remove Manual Judgment.

11. In the pipeline's schema, select Delete Baseline, and change the Depends On section.

a. Add Canary Analysis.

https://www.spinnaker.io/guides/user/canary/best-practices/#some-configuration-values-to-start-with


1/25/2020 Automating Canary Analysis on Google Kubernetes Engine with Spinnaker

https://cloud.google.com/solutions/automated-canary-analysis-kubernetes-engine-spinnaker/ 15/17

b. Remove Manual Judgment.

12. To ensure that the whole pipeline fails if the canary analysis fails, in the pipeline's schema, select Successful deployment, and then for
the existing precondition select the Edit icon.

a. Change the Expression to the following:

b. Select Update.

13. Finish replacing the Manual Judgement stage with the newly created Canary Analysis stage.

a. In the pipeline's schema, select Manual Judgment.

b. Select Remove stage.

14. Select Save Changes.

Your pipeline now looks like the following image:

Now that the automated canary analysis is con�gured, test the pipeline to ensure it behaves as expected.

1. Go to Delivery > Pipelines, and for the Canary Deploy pipeline, or Automated Canary Deploy if you used the CLI, select Start Manual
Execution.

2. Select a Success Rate of 60 and then select Run.

3. To check the current progress of the canary analysis, select Canary Analysis, and then select Task Status. After a few minutes, the Canary
Analysis stage fails, because the current success rate in production is 80. When the Canary Analysis stage fails, go to the report for this
canary analysis.

a. Select Canary Analysis.

b. Select Canary Summary.

c. Select the Report icon.

On the report page, the error rate is higher for the canary version than it is for the baseline version.



1/25/2020 Automating Canary Analysis on Google Kubernetes Engine with Spinnaker

https://cloud.google.com/solutions/automated-canary-analysis-kubernetes-engine-spinnaker/ 16/17



4. Repeat the steps in this section, but select a Success Rate of 90 for a successful canary analysis.

To avoid incurring charges to your Google Cloud Platform account for the resources used in this tutorial:

Caution: Deleting a project has the following effects:

Everything in the project is deleted. If you used an existing project for this tutorial, when you delete it, you also delete any other work you've done in

the project.

Custom project IDs are lost. When you created this project, you might have created a custom project ID that you want to use in the future. To preserve

the URLs that use the project ID, such as an appspot.com URL, delete selected resources inside the project instead of deleting the whole project.

If you plan to explore multiple tutorials and quickstarts, reusing projects can help you avoid exceeding project quota limits.

1. In the Cloud Console, go to the Manage resources page.

Go to the Manage resources page (https://console.cloud.google.com/iam-admin/projects)

2. In the project list, select the project you want to delete and click Delete .

3. In the dialog, type the project ID, and then click Shut down to delete the project.

If you want to keep the Google Cloud project you used in this tutorial, delete the individual resources:

1. Delete the GKE cluster.

2. When prompted for con�rmation, type Y.

https://console.cloud.google.com/iam-admin/projects


1/25/2020 Automating Canary Analysis on Google Kubernetes Engine with Spinnaker

https://cloud.google.com/solutions/automated-canary-analysis-kubernetes-engine-spinnaker/ 17/17

Read more about Spinnaker (https://www.spinnaker.io/).

Watch how Waze and Net�ix use Spinnaker and Kayenta (https://www.youtube.com/watch?v=PLNheBiWOGI).

See all resources about Continuous Delivery (/solutions/continuous-delivery/).

Learn how to use Spinnaker with Cloud Build and Cloud Source Repositories (/solutions/continuous-delivery-spinnaker-kubernetes-engine).

Go through a codelab that covers Continuous Delivery to GKE Using Spinnaker
 (https://codelabs.developers.google.com/codelabs/cloud-spinnaker-kubernetes-cd/).

Take a look at spin (https://blog.spinnaker.io/spin-and-roer-managed-pipeline-templates-4fde2951c648), a CLI tool for managing Spinnaker apps
and pipelines.

Try out other Google Cloud features for yourself. Have a look at our tutorials (/docs/tutorials).

https://www.spinnaker.io/
https://www.youtube.com/watch?v=PLNheBiWOGI
https://cloud.google.com/solutions/continuous-delivery/
https://cloud.google.com/solutions/continuous-delivery-spinnaker-kubernetes-engine
https://codelabs.developers.google.com/codelabs/cloud-spinnaker-kubernetes-cd/
https://blog.spinnaker.io/spin-and-roer-managed-pipeline-templates-4fde2951c648
https://cloud.google.com/docs/tutorials

