
1/25/2020 Automating infrastructure with Cloud Composer | Solutions

https://cloud.google.com/solutions/automating-infrastructure-using-cloud-composer 1/38

This tutorial demonstrates a way to automate cloud infrastructure by using Cloud Composer. The
example shows how to schedule automated backups of Compute Engine (/compute/) virtual
machine (VM) instances.

Cloud Composer (/composer/) is a fully managed work�ow orchestration service on Google Cloud.
Cloud Composer lets you author work�ows with a Python API, schedule them to run
automatically or start them manually, and monitor the execution of their tasks in real time
through a graphical UI.

Cloud Composer is based on Apache Air�ow (https://air�ow.apache.org/). Google runs this open
source orchestration platform on top of a Google Kubernetes Engine (/kubernetes-engine/) (GKE)
cluster. This cluster manages the Air�ow workers, and opens up a host of integration
opportunities with other Google Cloud products.

This tutorial is intended for operators, IT administrators, and developers who are interested in
automating infrastructure and taking a deep technical dive into the core features of Cloud
Composer. The tutorial is not meant as an enterprise-level disaster recovery (DR) guide nor as a
best practices guide for backups. For more information on how to create a DR plan for your
enterprise, see the disaster recovery planning guide (/solutions/dr-scenarios-planning-guide).

Cloud Composer work�ows are de�ned by creating a Directed Acyclic Graph
 (https://wikipedia.org/wiki/Directed_acyclic_graph) (DAG). From an Air�ow perspective
 (https://air�ow.apache.org/concepts.html#dags), a DAG is a collection of tasks organized to re�ect
their directional interdependencies. In this tutorial, you learn how to de�ne an Air�ow work�ow
that runs regularly to back up a Compute Engine virtual machine instance using Persistent Disk
snapshots.

The Compute Engine VM used in this example consists of an instance with an associated boot
persistent disk. Following the snapshot guidelines, described later, the Cloud Composer backup
work�ow calls the Compute Engine API to stop the instance, take a snapshot of the persistent
disk, and restart the instance. In between these tasks, the work�ow waits for each operation to
complete before proceeding.

https://cloud.google.com/compute/
https://cloud.google.com/composer/
https://airflow.apache.org/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/solutions/dr-scenarios-planning-guide
https://wikipedia.org/wiki/Directed_acyclic_graph
https://airflow.apache.org/concepts.html#dags

1/25/2020 Automating infrastructure with Cloud Composer | Solutions

https://cloud.google.com/solutions/automating-infrastructure-using-cloud-composer 2/38

The following diagram summarizes the architecture:

Cloud Storage

Compute Engine

Persistent Disk

Virtual Machine
Instance

Snapshots

Google Kubernetes Engine

Cloud
SQL ProxyRedis

Airflow Scheduler

Airflow Workers

Compute
Engine API

DAGs, Logs, and Plug-ins

Cloud Composer Environment

Before you begin the tutorial, the next section shows you how to create a Cloud Composer
environment. The advantage of this environment is that it uses multiple Google Cloud products,
but you don't have to con�gure each one individually.

Cloud Storage: The Air�ow DAG, plugin, and logs are stored in a Cloud Storage bucket.

Google Kubernetes Engine: The Air�ow platform is based on a micro-service architecture,
and is suitable to run in GKE.

1/25/2020 Automating infrastructure with Cloud Composer | Solutions

https://cloud.google.com/solutions/automating-infrastructure-using-cloud-composer 3/38

Air�ow workers load plugin and work�ow de�nitions from Cloud Storage and run each
task, using the Compute Engine API.

The Air�ow scheduler makes sure that backups are executed in the con�gured
cadence, and with the proper task order.

Redis is used as a message broker between Air�ow components.

Cloud SQL Proxy is used to communicate with the metadata repository.

Cloud SQL and App Engine Flex: Cloud Composer also uses a Cloud SQL instance for
metadata and an App Engine Flex app that serves the Air�ow UI. These resources are not
pictured in the diagram because they live in a separate Google-managed project.

For more details, see the Overview of Cloud Composer (/composer/docs/concepts/overview).

The use case presented in this tutorial is simple: take a snapshot of a single virtual machine with
a �xed schedule. However, a real-world scenario can include hundreds of VMs belonging to
different parts of the organization, or different tiers of a system, each requiring different backup
schedules. Scaling applies not only to our example with Compute Engine VMs, but to any
infrastructure component for which a scheduled process needs to be run

Cloud Composer excels at these complex scenarios because it's a full-�edged work�ow engine
based on Apache Air�ow hosted in the cloud, and not just an alternative to Cloud Scheduler
 (/scheduler/) or cron.

Air�ow DAGs, which are �exible representations of a work�ow, adapt to real-world needs while
still running from a single codebase. To build DAGs suitable for your use case, you can use a
combination of the following two approaches:

Create one DAG instance for groups of infrastructure components where the same schedule
can be used to start the process.

Create independent DAG instances for groups of infrastructure components that require
their own schedules.

A DAG can process components in parallel. A task must either start an asynchronous operation
for each component, or you must create a branch to process each component. You can build
DAGs dynamically from code to add or remove branches and tasks as needed.

https://cloud.google.com/composer/docs/concepts/overview
https://cloud.google.com/scheduler/

1/25/2020 Automating infrastructure with Cloud Composer | Solutions

https://cloud.google.com/solutions/automating-infrastructure-using-cloud-composer 4/38

Also, you can model dependencies between application tiers within the same DAG. For example:
you might want to stop all the web server instances before you stop any app server instances.

These optimizations are outside of the scope of the current tutorial.

Persistent Disk (/persistent-disk/) is durable block storage that can be attached to a virtual machine
instance and used either as the primary boot disk for the instance or as a secondary non-boot
disk for critical data. PDs are highly available (https://youtu.be/AKM01LFRmAg?t=560)—for every
write, three replicas are written, but Google Cloud customers are charged for only one of them.

A snapshot (/compute/docs/disks/create-snapshots) is an exact copy of a persistent disk at a given
point in time. Snapshots are incremental and compressed, and are stored transparently in Cloud
Storage.

It's possible to take snapshots of any persistent disk while apps are running. No snapshot will
ever contain a partially written block. However, if a write operation spanning several blocks is in
�ight when the backend receives the snapshot creation request, that snapshot might contain only
some of the updated blocks. You can deal with these inconsistencies the same way you would
address unclean shutdowns.

We recommend that you follow these guidelines to ensure that snapshots are consistent:

Minimize or avoid disk writes during the snapshot creation process. Scheduling backups
during off-peak hours is a good start.

For secondary non-boot disks, pause apps and processes that write data and freeze or
unmount the �le system.

For boot disks, it's not safe or feasible to freeze the root volume. Stopping the virtual
machine instance before taking a snapshot might be a suitable approach.

To avoid service downtime caused by freezing or stopping a virtual machine, we
recommend using a highly available architecture. For more information, see Disaster
recovery scenarios for applications (/solutions/dr-scenarios-for-applications).

Use a consistent naming convention for the snapshots. For example, use a timestamp with
an appropriate granularity, concatenated with the name of the instance, disk, and zone.

https://cloud.google.com/persistent-disk/
https://youtu.be/AKM01LFRmAg?t=560
https://cloud.google.com/compute/docs/disks/create-snapshots
https://cloud.google.com/solutions/dr-scenarios-for-applications

1/25/2020 Automating infrastructure with Cloud Composer | Solutions

https://cloud.google.com/solutions/automating-infrastructure-using-cloud-composer 5/38



For more information on creating consistent snapshots, see snapshot best practices
 (/compute/docs/disks/snapshot-best-practices).

Create custom Air�ow operators and a sensor for Compute Engine.

Create a Cloud Composer work�ow using the Air�ow operators and a sensor.

Schedule the work�ow to back up a Compute Engine instance at regular intervals.

Compute Engine (/compute/pricing/)

GKE (/kubernetes-engine/pricing/)

Cloud Storage (/storage/pricing/)

Cloud Composer environment (/composer/pricing/)

You can use the pricing calculator
 (https://cloud.google.com/products/calculator/#id=53faae5c-7c29-45be-b1d0-a6edf0790242) to generate
a cost estimate based on your projected usage.

1. Sign in (https://accounts.google.com/Login) to your Google Account.

If you don't already have one, sign up for a new account (https://accounts.google.com/SignUp).

2. In the Cloud Console, on the project selector page, select or create a Cloud project.

Note: If you don't plan to keep the resources that you create in this procedure, create a project instead of

selecting an existing project. After you �nish these steps, you can delete the project, removing all

resources associated with the project.

https://cloud.google.com/compute/docs/disks/snapshot-best-practices
https://cloud.google.com/compute/pricing/
https://cloud.google.com/kubernetes-engine/pricing/
https://cloud.google.com/storage/pricing/
https://cloud.google.com/composer/pricing/
https://cloud.google.com/products/calculator/#id=53faae5c-7c29-45be-b1d0-a6edf0790242
https://accounts.google.com/Login
https://accounts.google.com/SignUp

1/25/2020 Automating infrastructure with Cloud Composer | Solutions

https://cloud.google.com/solutions/automating-infrastructure-using-cloud-composer 6/38

Go to the project selector page (https://console.cloud.google.com/projectselector2/home/dashboard)

3. Make sure that billing is enabled for your Google Cloud project. Learn how to con�rm billing
is enabled for your project (/billing/docs/how-to/modify-project).

4. Create a Cloud Composer environment. To minimize cost, choose a disk size of 20 GB.

GO TO THE CREATE ENVIRONMENT PAGE (/composer/docs/how-to/managing/creating)

It usually takes about 15 minutes to provision the Cloud Composer environment, but it can
take up to one hour.

5. The full code for this tutorial is available on GitHub. To examine the �les as you follow
along, open the repository in Cloud Shell:

GO TO Cloud Shell (https://console.cloud.google.com/cloudshell)

6. In the Cloud Shell console home directory, run the following command:

When you �nish this tutorial, you can avoid continued billing by deleting the resources you
created. For more information, see Cleaning up (#clean-up).

The �rst step is to create the sample Compute Engine virtual machine instance to back up. This
instance runs WordPress (https://wordpress.org/), an open source content management system.

Follow these steps to create the WordPress instance on Compute Engine:

1. In Google Cloud Marketplace, go to the WordPress Certi�ed by Bitnami
 (https://console.cloud.google.com/marketplace/details/bitnami-launchpad/wordpress) launch page.

2. Click Launch on Compute Engine.

3. A pop-up window appears with a list of your projects. Select the project you previously
created for this tutorial.

https://console.cloud.google.com/projectselector2/home/dashboard
https://cloud.google.com/billing/docs/how-to/modify-project
https://cloud.google.com/composer/docs/how-to/managing/creating
https://console.cloud.google.com/cloudshell
https://wordpress.org/
https://console.cloud.google.com/marketplace/details/bitnami-launchpad/wordpress

1/25/2020 Automating infrastructure with Cloud Composer | Solutions

https://cloud.google.com/solutions/automating-infrastructure-using-cloud-composer 7/38

Google Cloud con�gures the required APIs in your project, and after a short wait it shows a
screen with the different con�guration options for your WordPress Compute Engine
instance.

4. Optionally, change the boot disk type to SSD to increase the instance boot speed.

5. Click Deploy.

You are taken to the Deployment Manager screen, where you can see the status of the
deployment.

The WordPress Deployment Manager script creates the WordPress Compute Engine
instance and two �rewall rules to allow TCP tra�c to reach the instance through ports 80
and 443. This process might take several minutes, with each item being deployed and
showing a progress-wheel icon.

When the process is completed, your WordPress instance is ready and serving the default
content on the website URL. The Deployment Manager screen shows the website URL (Site
address), the administration console URL (Admin URL) with its user and password,
documentation links, and suggested next steps.

6. Click the site address to verify that your WordPress instance is up and running. You should
see a default WordPress blog page.

The sample Compute Engine instance is now ready. The next step is to con�gure an automatic
incremental backup process of that instance's persistent disk.

1/25/2020 Automating infrastructure with Cloud Composer | Solutions

https://cloud.google.com/solutions/automating-infrastructure-using-cloud-composer 8/38

To back up the persistent disk of the test instance, you can create an Air�ow work�ow that stops
the instance, takes a snapshot of its persistent disk, and restarts the instance. Each of these
tasks is de�ned as code with a custom Air�ow operator
 (https://air�ow.apache.org/concepts.html#operators). Operators' code is then grouped in an Air�ow
plugin (https://air�ow.apache.org/plugins.html).

In this section, you learn how to build custom Air�ow operators that call the Compute Engine
Python Client library (/compute/docs/api/libraries#google_apis_python_client_library) to control the
instance lifecycle. You have other options for doing this, for example:

Use the Air�ow BashOperator to execute gcloud compute commands
 (/sdk/gcloud/reference/compute/).

Use the Air�ow HTTPOperator to execute HTTP calls directly to the Compute Engine REST
API (/compute/docs/reference/rest/v1/).

Use the Air�ow PythonOperator to call arbitrary Python functions without de�ning custom
operators.

This tutorial doesn't explore those alternatives.

The custom operators that you create in this tutorial use the Python Client Library to call the
Compute Engine API. Requests to the API must be authenticated and authorized. The
recommended way is to use a strategy called Application Default Credentials
 (/docs/authentication/production#providing_credentials_to_your_application) (ADC).

The ADC strategy is applied whenever a call is made from a client library:

1. The library veri�es if a service account is speci�ed in the environment variable
GOOGLE_APPLICATION_CREDENTIALS.

2. If the service account is not speci�ed, the library uses the default service account that
Compute Engine or GKE provides.

If these two methods fail, an error occurs.

https://airflow.apache.org/concepts.html#operators
https://airflow.apache.org/plugins.html
https://cloud.google.com/compute/docs/api/libraries#google_apis_python_client_library
https://cloud.google.com/sdk/gcloud/reference/compute/
https://cloud.google.com/compute/docs/reference/rest/v1/
https://cloud.google.com/docs/authentication/production#providing_credentials_to_your_application

1/25/2020 Automating infrastructure with Cloud Composer | Solutions

https://cloud.google.com/solutions/automating-infrastructure-using-cloud-composer 9/38

no_sensor/plugins/gce_commands_plugin.py
 (https://github.com/GoogleCloudPlatform/composer-infra-
python/blob/master/no_sensor/plugins/gce_commands_plugin.py)

om/GoogleCloudPlatform/composer-infra-python/blob/master/no_sensor/plugins/gce_commands_plugin.py)

Air�ow operators in this tutorial fall under the second method. When you create the Cloud
Composer environment, a GKE cluster is provisioned. The nodes of this cluster run Air�ow worker
pods. In turn, these workers execute the work�ow with the custom operators you de�ne. Because
you didn't specify a service account when you created the environment, the default service
account (/iam/docs/service-accounts#user-managed_service_accounts) for the GKE cluster nodes is
what the ADC strategy uses.

GKE cluster nodes are Compute Engine instances. So it's straightforward to obtain the credentials
associated with the Compute Engine default service account in the operator code.

This code uses the default application credentials to create a Python client that will send requests
to the Compute Engine API. In the following sections, you reference this code when creating each
Air�ow operator.

As an alternative to using the default Compute Engine service account, it's possible to create a
service account and con�gure it as a connection in the Air�ow administration console. This
method is described in the Managing Air�ow connections page
 (/composer/docs/how-to/managing/connections) and allows for more granular access control to
Google Cloud resources. This tutorial doesn't explore this alternative.

This section analyzes the creation of the �rst custom Air�ow operator, StopInstanceOperator.
This operator calls the Compute Engine API to stop the Compute Engine instance that's running
WordPress:

https://github.com/GoogleCloudPlatform/composer-infra-python/blob/master/no_sensor/plugins/gce_commands_plugin.py
https://github.com/GoogleCloudPlatform/composer-infra-python/blob/master/no_sensor/plugins/gce_commands_plugin.py
https://cloud.google.com/iam/docs/service-accounts#user-managed_service_accounts
https://cloud.google.com/composer/docs/how-to/managing/connections

1/25/2020 Automating infrastructure with Cloud Composer | Solutions

https://cloud.google.com/solutions/automating-infrastructure-using-cloud-composer 10/38

no_sensor/plugins/gce_commands_plugin.py
 (https://github.com/GoogleCloudPlatform/composer-infra-
python/blob/master/no_sensor/plugins/gce_commands_plugin.py)

om/GoogleCloudPlatform/composer-infra-python/blob/master/no_sensor/plugins/gce_commands_plugin.py)

1. In Cloud Shell, use a text editor such as nano or vim to open the gce_commands_plugin.py
�le:

2. Examine the imports at the top of the �le:

The notable imports are:

BaseOperator (https://air�ow.apache.org/_api/index.html#baseoperator): base class that all
Air�ow custom operators are required to inherit.

AirflowPlugin (https://air�ow.apache.org/plugins.html): base class to create a group of
operators, forming a plugin.

apply_defaults: function decorator that �lls arguments with default values if they are
not speci�ed in the operator constructor.

GoogleCredentials: class used to retrieve the app default credentials.

googleapiclient.discovery (https://github.com/googleapis/google-api-python-client): client
library entry point that allows the discovery of the underlying Google APIs. In this case,
the client library builds a resource to interact with the Compute Engine API
 (/compute/docs/api/libraries#google_apis_python_client_library).

https://github.com/GoogleCloudPlatform/composer-infra-python/blob/master/no_sensor/plugins/gce_commands_plugin.py
https://github.com/GoogleCloudPlatform/composer-infra-python/blob/master/no_sensor/plugins/gce_commands_plugin.py
https://airflow.apache.org/_api/index.html#baseoperator
https://airflow.apache.org/plugins.html
https://github.com/googleapis/google-api-python-client
https://cloud.google.com/compute/docs/api/libraries#google_apis_python_client_library

1/25/2020 Automating infrastructure with Cloud Composer | Solutions

https://cloud.google.com/solutions/automating-infrastructure-using-cloud-composer 11/38

no_sensor/plugins/gce_commands_plugin.py
 (https://github.com/GoogleCloudPlatform/composer-infra-
python/blob/master/no_sensor/plugins/gce_commands_plugin.py)

om/GoogleCloudPlatform/composer-infra-python/blob/master/no_sensor/plugins/gce_commands_plugin.py)

3. Next, look at the StopInstanceOperatorclass below the imports:

The StopInstanceOperatorclass has three methods:

__init__: the class constructor. Receives the project name, the zone where the
instance is running, and the name of the instance you want to stop. Also, it initializes
the self.compute variable by calling get_compute_api_client.

get_compute_api_client: helper method that returns an instance of the Compute
Engine API. It uses the ADC provided by GoogleCredentials to authenticate with the
API and authorize subsequent calls.

https://github.com/GoogleCloudPlatform/composer-infra-python/blob/master/no_sensor/plugins/gce_commands_plugin.py
https://github.com/GoogleCloudPlatform/composer-infra-python/blob/master/no_sensor/plugins/gce_commands_plugin.py

1/25/2020 Automating infrastructure with Cloud Composer | Solutions

https://cloud.google.com/solutions/automating-infrastructure-using-cloud-composer 12/38

no_sensor/plugins/gce_commands_plugin.py
 (https://github.com/GoogleCloudPlatform/composer-infra-
python/blob/master/no_sensor/plugins/gce_commands_plugin.py)

om/GoogleCloudPlatform/composer-infra-python/blob/master/no_sensor/plugins/gce_commands_plugin.py)

execute: main operator method overridden from BaseOperator. Air�ow calls this
method to run the operator. The method prints an info message to the logs and then
calls the Compute Engine API to stop the Compute Engine instance speci�ed by the
three parameters received in the constructor. The sleep() function at the end waits
until the instance has been stopped. In a production environment, you must use a
more deterministic method such as operator cross-communication. That technique is
described later in this tutorial.

The stop() method from the Compute Engine API shuts down the virtual machine instance
cleanly (/compute/docs/instances/stopping-or-deleting-an-instance#stop_an_instance). The operating
system executes the init.d shutdown scripts, including the one for WordPress at
/etc/init.d/bitnami. This script also handles the WordPress startup when the virtual machine is
started again. You can examine the service de�nition with the shutdown and startup
con�guration at /etc/systemd/system/bitnami.service.

This section creates the second custom operator, SnapshotDiskOperator. This operator takes a
snapshot of the instance's persistent disk.

In the gce_commands_plugin.py �le that you opened in the previous section, look at the
SnapshotDiskOperator class:

https://github.com/GoogleCloudPlatform/composer-infra-python/blob/master/no_sensor/plugins/gce_commands_plugin.py
https://github.com/GoogleCloudPlatform/composer-infra-python/blob/master/no_sensor/plugins/gce_commands_plugin.py
https://cloud.google.com/compute/docs/instances/stopping-or-deleting-an-instance#stop_an_instance

1/25/2020 Automating infrastructure with Cloud Composer | Solutions

https://cloud.google.com/solutions/automating-infrastructure-using-cloud-composer 13/38

The SnapshotDiskOperator class has the following methods:

__init__: the class constructor. Similar to the constructor in the
StopInstanceOperatorclass, but in addition to the project, zone, and instance name, this
constructor receives the name of the disk to create the snapshot from. This is because an
instance can have more than one persistent disk (/compute/docs/disks/#pdnumberlimits)

attached to it.

generate_snapshot_name: This sample method creates a simple unique name for each
snapshot using the name of the instance, the date, and the time with a one-second
granularity. Adjust the name to your needs, for example: by adding the disk name when
multiple disks are attached to an instance, or by increasing the time granularity to support
ad hoc snapshot creation requests.

execute: the main operator method overridden from BaseOperator. When the Air�ow worker
executes it, it generates a snapshot name using the generate_snapshot_name method. Then
it prints an info message and calls the Compute Engine API to create the snapshot with the
parameters received in the constructor.

https://cloud.google.com/compute/docs/disks/#pdnumberlimits

1/25/2020 Automating infrastructure with Cloud Composer | Solutions

https://cloud.google.com/solutions/automating-infrastructure-using-cloud-composer 14/38

no_sensor/plugins/gce_commands_plugin.py
 (https://github.com/GoogleCloudPlatform/composer-infra-
python/blob/master/no_sensor/plugins/gce_commands_plugin.py)

om/GoogleCloudPlatform/composer-infra-python/blob/master/no_sensor/plugins/gce_commands_plugin.py)

In this section, you create the third and �nal custom operator, StartInstanceOperator. This
operator restarts a Compute Engine instance.

In the gce_commands_plugin.py �le you previously opened, look at the SnapshotDiskOperator
class toward the bottom of the �le:

The StartInstanceOperatorclass has the following methods:

__init__: the class constructor. Similar to the constructor in the
StopInstanceOperatorclass.

https://github.com/GoogleCloudPlatform/composer-infra-python/blob/master/no_sensor/plugins/gce_commands_plugin.py
https://github.com/GoogleCloudPlatform/composer-infra-python/blob/master/no_sensor/plugins/gce_commands_plugin.py

1/25/2020 Automating infrastructure with Cloud Composer | Solutions

https://cloud.google.com/solutions/automating-infrastructure-using-cloud-composer 15/38

no_sensor/plugins/gce_commands_plugin.py
 (https://github.com/GoogleCloudPlatform/composer-infra-
python/blob/master/no_sensor/plugins/gce_commands_plugin.py)

om/GoogleCloudPlatform/composer-infra-python/blob/master/no_sensor/plugins/gce_commands_plugin.py)

execute: the main operator method overridden from BaseOperator. The difference from the
previous operators is the invocation of the appropriate Compute Engine API to start the
instance indicated in the constructor input parameters.

Earlier, you de�ned an Air�ow plugin containing three operators. These operators de�ne the tasks
that form part of an Air�ow work�ow. The work�ow presented here is simple and linear, but
Air�ow work�ows can be complex Directed Acyclic Graphs.

This section creates the plugin class that exposes the three operators, then creates the DAG using
these operators, deploys the DAG to Cloud Composer, and runs the DAG.

So far, the gce_commands_plugin.py�le includes the start, snapshot, and stop operators. To use
these operators in a work�ow, you must include them in a plugin class.

1. Note the GoogleComputeEnginePlugin class at the bottom of the
gce_commands_plugin.py�le:

This class, which inherits from AirflowPlugin, gives the plugin the internal name
gce_commands_plugin and adds the three operators to it.

2. Close the gce_commands_plugin.py �le.

https://github.com/GoogleCloudPlatform/composer-infra-python/blob/master/no_sensor/plugins/gce_commands_plugin.py
https://github.com/GoogleCloudPlatform/composer-infra-python/blob/master/no_sensor/plugins/gce_commands_plugin.py

1/25/2020 Automating infrastructure with Cloud Composer | Solutions

https://cloud.google.com/solutions/automating-infrastructure-using-cloud-composer 16/38

The DAG de�nes the work�ow that Air�ow executes. For the DAG to know which disk to back up,
you need to de�ne a few variables: which Compute Engine instance the disk is attached to, the
zone the instance is running on, and the project where all the resources are available.

You could hard-code these variables in the DAG source code itself, but it's a best practice to de�ne
them as Air�ow variables (https://air�ow.apache.org/concepts.html#variables). This way, any
con�guration changes can be managed centrally and independently from code deployments.

De�ne the DAG con�guration:

1. In Cloud Shell, set the location of your Cloud Composer environment:

The location is the Compute Engine region where the Cloud Composer environment is
located, for example: us-central1 or europe-west1. It was set at the time of environment
creation and is available in the Cloud Composer console page.
 (https://console.cloud.google.com/composer)

2. Set the Cloud Composer environment name:

The --format parameter (/sdk/gcloud/reference/topic/formats) is used to select only the name
column from the resulting table. You can assume that only one environment has been
created.

3. Create the PROJECT variable in Air�ow using the name of the current Google Cloud project:

Where:

gcloud composer environments run is used to run Air�ow CLI commands.

https://airflow.apache.org/concepts.html#variables
https://console.cloud.google.com/composer
https://cloud.google.com/sdk/gcloud/reference/topic/formats

1/25/2020 Automating infrastructure with Cloud Composer | Solutions

https://cloud.google.com/solutions/automating-infrastructure-using-cloud-composer 17/38

The variables Air�ow command sets the PROJECT Air�ow variable to the value
returned by gcloud config

4. Create the INSTANCE variable in Air�ow with the name of the WordPress instance:

This command uses the --filter (/sdk/gcloud/reference/topic/�lters) parameter to select only
the instance whose name matches a regular expression containing the string wordpress.
This approach assumes that there is only one such instance, and that your instance and
disk have "wordpress" as part of their name, which is true if you accepted the defaults.

5. Create the ZONE variable in Air�ow using the zone of the WordPress instance:

6. Create the DISK variable in Air�ow with the name of the persistent disk attached to the
WordPress instance:

7. Verify that the Air�ow variables have been created correctly:

a. In the Cloud Console, go to the Cloud Composer page.

Go to the Cloud Composer page (https://console.cloud.google.com/composer)

b. In the Air�ow web server column, click the Air�ow link. A new tab showing the
Air�ow web server main page opens.

https://cloud.google.com/sdk/gcloud/reference/topic/filters
https://console.cloud.google.com/composer

1/25/2020 Automating infrastructure with Cloud Composer | Solutions

https://cloud.google.com/solutions/automating-infrastructure-using-cloud-composer 18/38

no_sensor/dags/backup_vm_instance.py
 (https://github.com/GoogleCloudPlatform/composer-infra-
python/blob/master/no_sensor/dags/backup_vm_instance.py)

b.com/GoogleCloudPlatform/composer-infra-python/blob/master/no_sensor/dags/backup_vm_instance.py)

c. Click Admin and then Variables.

The list shows the DAG con�guration variables.

The DAG de�nition lives in a dedicated Python �le. Your next step is to create the DAG, chaining
the three operators from the plugin.

1. In Cloud Shell, use a text editor such as nano or vim to open the backup_vm_instance.py
�le:

2. Examine the imports at the top of the �le:

https://github.com/GoogleCloudPlatform/composer-infra-python/blob/master/no_sensor/dags/backup_vm_instance.py
https://github.com/GoogleCloudPlatform/composer-infra-python/blob/master/no_sensor/dags/backup_vm_instance.py

1/25/2020 Automating infrastructure with Cloud Composer | Solutions

https://cloud.google.com/solutions/automating-infrastructure-using-cloud-composer 19/38

no_sensor/dags/backup_vm_instance.py
 (https://github.com/GoogleCloudPlatform/composer-infra-
python/blob/master/no_sensor/dags/backup_vm_instance.py)

b.com/GoogleCloudPlatform/composer-infra-python/blob/master/no_sensor/dags/backup_vm_instance.py)

Summarizing these imports:

DAG is the Directed Acyclic Graph class (https://air�ow.apache.org/concepts.html#dags)

de�ned by Air�ow.

DummyOperator is used to create the beginning and ending no-op operators to improve
the work�ow visualization. In more complex DAGs, DummyOperator can be used to join
branches (https://air�ow.incubator.apache.org/concepts.html#branching) and to create
SubDAGs (https://air�ow.incubator.apache.org/concepts.html#subdags).

The DAG uses the three operators that you de�ned in the previous sections.

3. De�ne the values of the parameters to be passed to operator constructors:

Where:

INTERVAL de�nes how often the backup work�ow runs. The preceding code speci�es a
daily recurrence using an Air�ow cron preset. If you want to use a different interval,
see the DAG Runs reference page (https://air�ow.apache.org/scheduler.html#dag-runs).
You could also trigger the work�ow manually, independent of this schedule.

START_DATE de�nes the point in time when the backups are scheduled to start. There is
no need to change this value.

https://github.com/GoogleCloudPlatform/composer-infra-python/blob/master/no_sensor/dags/backup_vm_instance.py
https://github.com/GoogleCloudPlatform/composer-infra-python/blob/master/no_sensor/dags/backup_vm_instance.py
https://airflow.apache.org/concepts.html#dags
https://airflow.incubator.apache.org/concepts.html#branching
https://airflow.incubator.apache.org/concepts.html#subdags
https://airflow.apache.org/scheduler.html#dag-runs

1/25/2020 Automating infrastructure with Cloud Composer | Solutions

https://cloud.google.com/solutions/automating-infrastructure-using-cloud-composer 20/38

no_sensor/dags/backup_vm_instance.py
 (https://github.com/GoogleCloudPlatform/composer-infra-
python/blob/master/no_sensor/dags/backup_vm_instance.py)

b.com/GoogleCloudPlatform/composer-infra-python/blob/master/no_sensor/dags/backup_vm_instance.py)

no_sensor/dags/backup_vm_instance.py
 (https://github.com/GoogleCloudPlatform/composer-infra-
python/blob/master/no_sensor/dags/backup_vm_instance.py)

b.com/GoogleCloudPlatform/composer-infra-python/blob/master/no_sensor/dags/backup_vm_instance.py)

The rest of the values are retrieved from the Air�ow variables that you con�gured in
the previous section.

4. Use the following code to create the DAG with some of the previously de�ned parameters.
This code also gives the DAG a name and a description, both of which are shown in the
Cloud Composer UI.

5. Populate the DAG with tasks, which are operator instances:

https://github.com/GoogleCloudPlatform/composer-infra-python/blob/master/no_sensor/dags/backup_vm_instance.py
https://github.com/GoogleCloudPlatform/composer-infra-python/blob/master/no_sensor/dags/backup_vm_instance.py
https://github.com/GoogleCloudPlatform/composer-infra-python/blob/master/no_sensor/dags/backup_vm_instance.py
https://github.com/GoogleCloudPlatform/composer-infra-python/blob/master/no_sensor/dags/backup_vm_instance.py

1/25/2020 Automating infrastructure with Cloud Composer | Solutions

https://cloud.google.com/solutions/automating-infrastructure-using-cloud-composer 21/38

no_sensor/dags/backup_vm_instance.py
 (https://github.com/GoogleCloudPlatform/composer-infra-
python/blob/master/no_sensor/dags/backup_vm_instance.py)

b.com/GoogleCloudPlatform/composer-infra-python/blob/master/no_sensor/dags/backup_vm_instance.py)

This code instantiates all the tasks needed for the work�ow, passing the de�ned parameters
to the corresponding operator constructors.

The task_id values are the unique IDs that will be shown in the Cloud Composer UI.
You use these IDs later to pass data between tasks.

retries sets the number of times to retry a task before failing. For DummyOperator
tasks, these values are ignored.

dag=dag indicates that a task is attached to the previously created DAG. This
parameter is only required in the �rst task of the work�ow.

6. De�ne the sequence of tasks that comprise the work�ow DAG:

7. Close the gce_commands_plugin.py �le.

The work�ow represented by the operator DAG is now ready to be run by Cloud Composer. Cloud
Composer reads the DAG and plugin de�nitions from an associated Cloud Storage bucket
 (/composer/docs/concepts/cloud-storage). This bucket and the corresponding dags and plugins
directories were automatically created when you created the Cloud Composer environment.

Using Cloud Shell, you can copy the DAG and plugin into the associated Cloud Storage bucket:

1. In Cloud Shell, get the bucket name:

https://github.com/GoogleCloudPlatform/composer-infra-python/blob/master/no_sensor/dags/backup_vm_instance.py
https://github.com/GoogleCloudPlatform/composer-infra-python/blob/master/no_sensor/dags/backup_vm_instance.py
https://cloud.google.com/composer/docs/concepts/cloud-storage

1/25/2020 Automating infrastructure with Cloud Composer | Solutions

https://cloud.google.com/solutions/automating-infrastructure-using-cloud-composer 22/38

There should be a single bucket with a name of the form: gs://[REGION]-
{ENVIRONMENT_NAME]-{ID}-bucket/.

2. Execute the following script to copy the DAG and plugin �les into the corresponding bucket
directories:

The bucket name already includes a trailing slash, hence the double quotes around the
$BUCKET variable.

3. In the Cloud Console, go to the Cloud Composer page.

Go to the Cloud Composer page (https://console.cloud.google.com/composer)

4. In the Air�ow web server column, click the Air�ow link. A new tab showing the Air�ow web
server main page opens. Wait two to three minutes and reload the page. It might take a few
cycles of waiting and then reloading for the page to be ready.

A list showing the newly created DAG is shown, similar to the following:

If there are syntax errors in the code, a message appears on top of the DAG table. If there
are runtime errors, they are marked under DAG Runs. Correct any errors before continuing.
The easiest way to do this is to recopy the �les from the GitHub repo
 (https://github.com/GoogleCloudPlatform/composer-infra-python.git) into the bucket.

5. To see a more detailed stack trace, run the following command in Cloud Shell:

https://console.cloud.google.com/composer
https://github.com/GoogleCloudPlatform/composer-infra-python.git

1/25/2020 Automating infrastructure with Cloud Composer | Solutions

https://cloud.google.com/solutions/automating-infrastructure-using-cloud-composer 23/38

6. Air�ow starts running the work�ow immediately, shown under the column Dag Runs.

The work�ow is already underway, but if you need to run it again, you can trigger it
manually with the following steps:

a. In the Links column, click the �rst icon, Trigger Dag, marked with an arrow in the
previous screenshot.

b. In the pop-up con�rming Are you sure?, click OK.

In a few seconds, the work�ow starts and a new run appears as a light green circle
under DAG Runs.

7. In the Links column, click the Graph View icon, marked with an arrow in the previous
screenshot.

The Graph View shows the work�ow, the successfully executed tasks with a dark green
border, the task being executed with a light green border and the pending tasks with no
border. You can click the task to view logs, see its details, and perform other operations.

8. To follow the execution along, periodically click the refresh button at the top-right corner.

Congratulations! You completed your �rst Cloud Composer work�ow run. When the
work�ow �nishes, it creates a snapshot of the Compute Engine instance persistent disk.

9. In Cloud Shell, verify that the snapshot has been created:

Alternatively, you can use the Cloud Console menu to go to the Compute Engine Snapshots
 (https://console.cloud.google.com/compute/snapshots) page.

https://console.cloud.google.com/compute/snapshots

1/25/2020 Automating infrastructure with Cloud Composer | Solutions

https://cloud.google.com/solutions/automating-infrastructure-using-cloud-composer 24/38

One snapshot should be visible at this point. Subsequent work�ow runs, triggered either manually
or automatically following the speci�ed schedule, will create further snapshots.

Snapshots are incremental (/compute/docs/disks/create-snapshots). The size of the �rst snapshot is
the largest because it contains all the blocks from the Persistent Disk in compressed form.
Successive snapshots only contain the blocks that were changed from the previous snapshot,
and any references to the unchanged blocks. So subsequent snapshots are smaller than the �rst
one, take less time to produce, and cost less.

If a snapshot is deleted, its data is moved into the next corresponding snapshot to keep the
consistency of consecutive deltas being stored in the snapshot chain. Only when all snapshots
are removed is all the backed-up data from the persistent disk removed.

When running the work�ow, you might have noticed that it takes some time to complete each
step. This wait is because the operators include a sleep() instruction at the end to give time to
the Compute Engine API to �nish its work before starting the next task.

This approach is not optimal, however, and can cause unexpected issues. For example, during
snapshot creation the wait time might be too long for incremental snapshots, which means you're
wasting time waiting for a task that has already �nished. Or the wait time might be too short.
This can cause the whole work�ow to fail or to produce unreliable results because the instance is
not fully stopped or the snapshot process is not done when the machine is started.

You need to be able to tell the next task that the previous task is done. One solution is to use
Air�ow Sensors, which pause the work�ow until some criteria is met. In this case, the criterion is
the previous Compute Engine operation �nishing successfully.

https://cloud.google.com/compute/docs/disks/create-snapshots

1/25/2020 Automating infrastructure with Cloud Composer | Solutions

https://cloud.google.com/solutions/automating-infrastructure-using-cloud-composer 25/38

no_sensor/plugins/gce_commands_plugin.py
 (https://github.com/GoogleCloudPlatform/composer-infra-
python/blob/master/no_sensor/plugins/gce_commands_plugin.py)

om/GoogleCloudPlatform/composer-infra-python/blob/master/no_sensor/plugins/gce_commands_plugin.py)

When tasks need to communicate with each other, Air�ow provides a mechanism known as
XCom, or "cross-communication." XCom lets tasks exchange messages consisting of a key, a
value, and a timestamp.

The simplest way to pass a message using XCom is for an operator to return a value from its
execute() method. The value can be any object that Python can serialize using the pickle module
 (https://docs.python.org/3/library/pickle.html).

The three operators described in previous sections call the Compute Engine API. All these API
calls return an Operation resource (/compute/docs/reference/rest/v1/zoneOperations) object. These
objects are meant to be used to manage asynchronous requests such as the ones on the Air�ow
operators. Each object has a �eld name that you can use to poll for the latest state of the Compute
Engine operation.

Modify the operators to return the name of the Operation resource object:

1. In Cloud Shell, use a text editor such as nano or vim to open the gce_commands_plugin.py
�le, this time from the sensor/plugins directory:

2. In the execute method of the StopInstanceOperator, notice how the following code:

has been replaced with this code:

https://github.com/GoogleCloudPlatform/composer-infra-python/blob/master/no_sensor/plugins/gce_commands_plugin.py
https://github.com/GoogleCloudPlatform/composer-infra-python/blob/master/no_sensor/plugins/gce_commands_plugin.py
https://docs.python.org/3/library/pickle.html
https://cloud.google.com/compute/docs/reference/rest/v1/zoneOperations

1/25/2020 Automating infrastructure with Cloud Composer | Solutions

https://cloud.google.com/solutions/automating-infrastructure-using-cloud-composer 26/38

sensor/plugins/gce_commands_plugin.py
 (https://github.com/GoogleCloudPlatform/composer-infra-
python/blob/master/sensor/plugins/gce_commands_plugin.py)

b.com/GoogleCloudPlatform/composer-infra-python/blob/master/sensor/plugins/gce_commands_plugin.py)

no_sensor/plugins/gce_commands_plugin.py
 (https://github.com/GoogleCloudPlatform/composer-infra-
python/blob/master/no_sensor/plugins/gce_commands_plugin.py)

om/GoogleCloudPlatform/composer-infra-python/blob/master/no_sensor/plugins/gce_commands_plugin.py)

Where:

The �rst line captures the return value from the API call into the operation variable.

The second line returns the operation name �eld from the execute() method. This
instruction serializes the name using pickle
 (https://docs.python.org/2/library/pickle.html#module-pickle) and pushes it into the XCom
intra-task shared space. The value will later be pulled in last-in, �rst-out order.

If a task needs to push multiple values, it's possible to give XCom an explicit key by calling
xcom_push() (https://air�ow.apache.org/concepts.html#xcoms) directly instead of returning the
value.

3. Similarly, in the execute method of the SnapshotDiskOperator, note how the following code:

has been replaced with this code:

https://github.com/GoogleCloudPlatform/composer-infra-python/blob/master/sensor/plugins/gce_commands_plugin.py
https://github.com/GoogleCloudPlatform/composer-infra-python/blob/master/sensor/plugins/gce_commands_plugin.py
https://github.com/GoogleCloudPlatform/composer-infra-python/blob/master/no_sensor/plugins/gce_commands_plugin.py
https://github.com/GoogleCloudPlatform/composer-infra-python/blob/master/no_sensor/plugins/gce_commands_plugin.py
https://docs.python.org/2/library/pickle.html#module-pickle
https://airflow.apache.org/concepts.html#xcoms

1/25/2020 Automating infrastructure with Cloud Composer | Solutions

https://cloud.google.com/solutions/automating-infrastructure-using-cloud-composer 27/38

sensor/plugins/gce_commands_plugin.py
 (https://github.com/GoogleCloudPlatform/composer-infra-
python/blob/master/sensor/plugins/gce_commands_plugin.py)

b.com/GoogleCloudPlatform/composer-infra-python/blob/master/sensor/plugins/gce_commands_plugin.py)

no_sensor/plugins/gce_commands_plugin.py
 (https://github.com/GoogleCloudPlatform/composer-infra-
python/blob/master/no_sensor/plugins/gce_commands_plugin.py)

om/GoogleCloudPlatform/composer-infra-python/blob/master/no_sensor/plugins/gce_commands_plugin.py)

sensor/plugins/gce_commands_plugin.py
 (https://github.com/GoogleCloudPlatform/composer-infra-
python/blob/master/sensor/plugins/gce_commands_plugin.py)

b.com/GoogleCloudPlatform/composer-infra-python/blob/master/sensor/plugins/gce_commands_plugin.py)

There are two unrelated names in this code. The �rst one refers to the snapshot name, and
the second is the operation name.

4. Finally, in the execute method of the StartInstanceOperator, note how the following code:

has been replaced with this code:

https://github.com/GoogleCloudPlatform/composer-infra-python/blob/master/sensor/plugins/gce_commands_plugin.py
https://github.com/GoogleCloudPlatform/composer-infra-python/blob/master/sensor/plugins/gce_commands_plugin.py
https://github.com/GoogleCloudPlatform/composer-infra-python/blob/master/no_sensor/plugins/gce_commands_plugin.py
https://github.com/GoogleCloudPlatform/composer-infra-python/blob/master/no_sensor/plugins/gce_commands_plugin.py
https://github.com/GoogleCloudPlatform/composer-infra-python/blob/master/sensor/plugins/gce_commands_plugin.py
https://github.com/GoogleCloudPlatform/composer-infra-python/blob/master/sensor/plugins/gce_commands_plugin.py

1/25/2020 Automating infrastructure with Cloud Composer | Solutions

https://cloud.google.com/solutions/automating-infrastructure-using-cloud-composer 28/38

sensor/plugins/gce_commands_plugin.py
 (https://github.com/GoogleCloudPlatform/composer-infra-
python/blob/master/sensor/plugins/gce_commands_plugin.py)

b.com/GoogleCloudPlatform/composer-infra-python/blob/master/sensor/plugins/gce_commands_plugin.py)

5. At this point, there should not be any calls to the sleep() method throughout the
gce_commands_plugin.py �le. Make sure this is true by searching the �le for sleep.
Otherwise, double-check the previous steps in this section.

Since no calls to sleep() are made from the code, the following line was removed from the
imports section at the top of the �le:

6. Close the gce_commands_plugin.py�le.

In the previous section, you modi�ed each operator to return a Compute Engine operation name.
In this section, using the operation name, you create an Air�ow Sensor to poll the Compute
Engine API for the completion of each operation.

1. In Cloud Shell, use a text editor such as nano or vim to open the gce_commands_plugin.py
�le, making sure you use the sensor/plugins directory:

Note the following line of code at the top of the import section, just below the from
airflow.models import BaseOperator line:

All sensors are derived from the BaseSensorOperator class, and must override its poke()
method.

2. Examine the new OperationStatusSensor class:

https://github.com/GoogleCloudPlatform/composer-infra-python/blob/master/sensor/plugins/gce_commands_plugin.py
https://github.com/GoogleCloudPlatform/composer-infra-python/blob/master/sensor/plugins/gce_commands_plugin.py

1/25/2020 Automating infrastructure with Cloud Composer | Solutions

https://cloud.google.com/solutions/automating-infrastructure-using-cloud-composer 29/38

The class OperationStatusSensor has the following methods:

__init__: the class constructor. This constructor takes similar parameters to the ones
for the Operators, with one exception: prior_task_id. This parameter is the ID of the
previous task.

poke: the main sensor method overridden from BaseSensorOperator. Air�ow calls this
method every 60 seconds until the method returns True. Only in that case are
downstream tasks allowed to run.

1/25/2020 Automating infrastructure with Cloud Composer | Solutions

https://cloud.google.com/solutions/automating-infrastructure-using-cloud-composer 30/38

sensor/plugins/gce_commands_plugin.py
 (https://github.com/GoogleCloudPlatform/composer-infra-
python/blob/master/sensor/plugins/gce_commands_plugin.py)

b.com/GoogleCloudPlatform/composer-infra-python/blob/master/sensor/plugins/gce_commands_plugin.py)

You can con�gure the interval for these retries by passing the poke_interval
parameter to the constructor. You can also de�ne a timeout. For more information,
see the BaseSensorOperator API reference
 (https://air�ow.apache.org/_api/index.html#basesensoroperator).

In the implementation of the preceding poke method, the �rst line is a call to
xcom_pull() (https://air�ow.apache.org/concepts.html#xcoms). This method obtains the
most recent XCom value for the task identi�ed by prior_task_id. The value is the
name of a Compute Engine Operation and is stored in the operation_name variable.

The code then executes the zoneOperations.get() method, passing operation_name
as a parameter to obtain the latest status for the operation. If the status is DONE, then
the poke() method returns True, otherwise False. In the former case, downstream
tasks will be started; in the latter case, the work�ow execution remains paused and the
poke() method is called again after poke_interval seconds.

3. At the bottom of the �le, note how the GoogleComputeEnginePlugin class has been updated
to add OperationStatusSensor to the list of operators exported by the plugin:

4. Close the gce_commands_plugin.py�le.

After you create the sensor in the plugin, you can add it to the work�ow. In this section, you
update the work�ow to its �nal state, which includes all three operators plus sensor tasks in
between. You then run and verify the updated work�ow.

https://github.com/GoogleCloudPlatform/composer-infra-python/blob/master/sensor/plugins/gce_commands_plugin.py
https://github.com/GoogleCloudPlatform/composer-infra-python/blob/master/sensor/plugins/gce_commands_plugin.py
https://airflow.apache.org/_api/index.html#basesensoroperator
https://airflow.apache.org/concepts.html#xcoms

1/25/2020 Automating infrastructure with Cloud Composer | Solutions

https://cloud.google.com/solutions/automating-infrastructure-using-cloud-composer 31/38

sensor/dags/backup_vm_instance.py
 (https://github.com/GoogleCloudPlatform/composer-infra-
python/blob/master/sensor/dags/backup_vm_instance.py)

ithub.com/GoogleCloudPlatform/composer-infra-python/blob/master/sensor/dags/backup_vm_instance.py)

1. In Cloud Shell, use a text editor such as nano or vim to open the backup_vm_instance.py �le,
this time from the sensor/dags directory:

2. In the imports section, notice that the newly created sensor is imported below the line from
airflow operators import StartInstanceOperator:

3. Examine the lines following the ## Wait tasks comment

The code reuses OperationStatusSensor to de�ne three intermediate "wait tasks". Each of
these tasks waits for the previous operation to complete. The following parameters are
passed to the sensor constructor:

The PROJECT, ZONE, and INSTANCE of the WordPress instance, already de�ned in the �le.

https://github.com/GoogleCloudPlatform/composer-infra-python/blob/master/sensor/dags/backup_vm_instance.py
https://github.com/GoogleCloudPlatform/composer-infra-python/blob/master/sensor/dags/backup_vm_instance.py

1/25/2020 Automating infrastructure with Cloud Composer | Solutions

https://cloud.google.com/solutions/automating-infrastructure-using-cloud-composer 32/38



no_sensor/dags/backup_vm_instance.py
 (https://github.com/GoogleCloudPlatform/composer-infra-
python/blob/master/no_sensor/dags/backup_vm_instance.py)

b.com/GoogleCloudPlatform/composer-infra-python/blob/master/no_sensor/dags/backup_vm_instance.py)

sensor/dags/backup_vm_instance.py
 (https://github.com/GoogleCloudPlatform/composer-infra-
python/blob/master/sensor/dags/backup_vm_instance.py)

ithub.com/GoogleCloudPlatform/composer-infra-python/blob/master/sensor/dags/backup_vm_instance.py)

prior_task_id: The ID of the task that the sensor is waiting for. For example, the
wait_for_stop task waits for the task with ID stop_instance to be completed.

Note: The task IDs passed to the sensor constructor must match the IDs passed to the operator

constructors for the corresponding Compute Engine tasks.

poke_interval: The number of seconds that Air�ow should wait in between retry calls
to the sensor's poke() method. In other words, the frequency to verify whether
prior_task_id is already done.

task_id: The ID of the newly created wait task.

4. At the bottom of the �le, note how the following code:

has been replaced with this code:

These lines de�ne the full backup work�ow.

5. Close the backup_vm_instance.py�le.

Now you need to copy the DAG and plugin from the associated Cloud Storage bucket:

https://github.com/GoogleCloudPlatform/composer-infra-python/blob/master/no_sensor/dags/backup_vm_instance.py
https://github.com/GoogleCloudPlatform/composer-infra-python/blob/master/no_sensor/dags/backup_vm_instance.py
https://github.com/GoogleCloudPlatform/composer-infra-python/blob/master/sensor/dags/backup_vm_instance.py
https://github.com/GoogleCloudPlatform/composer-infra-python/blob/master/sensor/dags/backup_vm_instance.py

1/25/2020 Automating infrastructure with Cloud Composer | Solutions

https://cloud.google.com/solutions/automating-infrastructure-using-cloud-composer 33/38

1. In Cloud Shell, get the bucket name:

You should see a single bucket with a name of the form: gs://[REGION]-
[ENVIRONMENT_NAME]-[ID]-bucket/.

2. Execute the following script to copy the DAG and plugin �les into the corresponding bucket
directories:

The bucket name already includes a trailing slash, hence the double quotes around the
$BUCKET variable

3. Upload the updated work�ow to Air�ow:

a. In the Cloud Console, go to the Cloud Composer page.

Go to the Cloud Composer page (https://console.cloud.google.com/composer)

b. In the Air�ow column, click the Air�ow web server link to show the Air�ow main
page.

c. Wait for two or three minutes until Air�ow automatically updates the plugin and
work�ow. You might observe the DAG table becoming empty momentarily. Reload the
page a few times until the Links section appears consistently.

d. Make sure no errors are shown, and in the Links section, click Tree View.

https://console.cloud.google.com/composer

1/25/2020 Automating infrastructure with Cloud Composer | Solutions

https://cloud.google.com/solutions/automating-infrastructure-using-cloud-composer 34/38

On the left, the work�ow is represented as a bottom-up tree. On the right, a graph of
the task runs for different dates. A green square means a successful run for that
speci�c task and date. A white square means a task that has never been run. Because
you updated the DAG with new sensor tasks, all of those tasks are shown in white,
while the Compute Engine tasks are shown in green.

e. Run the updated backup work�ow:

i. In the top menu, click DAGs to go back to the main page.

ii. In the Links column, click Trigger DAG.

iii. In the pop-up con�rming Are you sure?, click OK. A new work�owA run starts,
appearing as a light green circle in the DAG Runs column.

f. Under Links, click the Graph View icon to observe the work�ow execution in real time.

g. Click the refresh button on the right side to follow the task execution. Note how the
work�ow stops on each of the sensor tasks to wait for the previous task to �nish. The
wait time is adjusted to the needs of each task instead of relying on a hard-coded
sleep value.

1/25/2020 Automating infrastructure with Cloud Composer | Solutions

https://cloud.google.com/solutions/automating-infrastructure-using-cloud-composer 35/38

4. Optionally, during the work�ow, go back to the Cloud Console, select the Compute Engine
menu, and click VM instances to see how the virtual machine gets stopped and restarted.
You can also click Snapshots to see the new snapshot being created.

You have now run a backup work�ow that creates a snapshot from a Compute Engine instance.
This snapshot follows best practices and optimizes the �ow with sensors.

Having a snapshot available is only part of the backup story. The other part is being able to
restore your instance from the snapshot.

To create an instance using a snapshot:

1. In Cloud Shell, get a list of the available snapshots:

The output is similar to this:

1/25/2020 Automating infrastructure with Cloud Composer | Solutions

https://cloud.google.com/solutions/automating-infrastructure-using-cloud-composer 36/38

2. Select a snapshot and create a standalone boot persistent disk from it. Replace the
bracketed placeholders with your own values.

Where:

DISK_NAME is a the name of the new standalone boot persistent disk.

SNAPSHOT_NAME is the selected snapshot from the �rst column of the previous output.

ZONE is the compute zone where the new disk will be created.

3. Create a new instance, using the boot disk. Replace [INSTANCE_NAME] with the name of the
instance you want to create.

With the two tags speci�ed in the command, the instance is automatically allowed to
receive incoming tra�c on ports 443 and 80 because of the pre-existing �rewall rules that
were created for the initial WordPress instance.

Take note of the new instance's External IP returned by the previous command.

4. Verify that WordPress is running on the newly created instance. On a new browser tab,
navigate to the external IP address. The WordPress default landing page is shown.

5. Alternatively, create an instance using a snapshot from the console:

a. In the Cloud Console, go to the Snapshots page:

GO TO THE SNAPSHOTS PAGE (https://console.cloud.google.com/compute/snapshots)

b. Click the most recent snapshot.

c. Click Create Instance.

d. In the New VM Instance form, click Management, security, disks, networking, sole
tenancy and then Networking.

https://console.cloud.google.com/compute/snapshots

1/25/2020 Automating infrastructure with Cloud Composer | Solutions

https://cloud.google.com/solutions/automating-infrastructure-using-cloud-composer 37/38



e. Add wordpress-1-tcp-443 andwordpress-1-tcp-80 to the Network tags
 (/vpc/docs/add-remove-network-tags) �eld, pressing enter after each tag. See above for
an explanation of these tags.

f. Click Create.

A new instance based on the latest snapshot is created, and is ready to serve content.

6. Open the Compute Engine instances page (https://console.cloud.google.com/compute/instances)

and take note of the new instance's external IP.

7. Verify that WordPress is running on the newly created instance. Navigate to the external IP
on a new browser tab.

For more details, see Creating an instance from a snapshot
 (/compute/docs/instances/create-start-instance#createsnapshot).

Caution: Deleting a project has the following effects:

Everything in the project is deleted. If you used an existing project for this tutorial, when you

delete it, you also delete any other work you've done in the project.

Custom project IDs are lost. When you created this project, you might have created a custom

project ID that you want to use in the future. To preserve the URLs that use the project ID, such as

an appspot.com URL, delete selected resources inside the project instead of deleting the whole

project.

1. In the Cloud Console, go to the Manage resources page.

Go to the Manage resources page (https://console.cloud.google.com/iam-admin/projects)

2. In the project list, select the project you want to delete and click Delete .

3. In the dialog, type the project ID, and then click Shut down to delete the project.

https://cloud.google.com/vpc/docs/add-remove-network-tags
https://console.cloud.google.com/compute/instances
https://cloud.google.com/compute/docs/instances/create-start-instance#createsnapshot
https://console.cloud.google.com/iam-admin/projects

1/25/2020 Automating infrastructure with Cloud Composer | Solutions

https://cloud.google.com/solutions/automating-infrastructure-using-cloud-composer 38/38

Read about best practices for enterprise organizations
 (/docs/enterprise/best-practices-for-enterprise-organizations).

Read about designing and implementing a disaster recovery plan
 (/solutions/dr-scenarios-planning-guide).

Read more about Cloud Composer concepts (/composer/docs/concepts).

Read more about Apache Air�ow (https://air�ow.apache.org/).

Try out other Google Cloud features for yourself. Have a look at our tutorials (/docs/tutorials).

https://cloud.google.com/docs/enterprise/best-practices-for-enterprise-organizations
https://cloud.google.com/solutions/dr-scenarios-planning-guide
https://cloud.google.com/composer/docs/concepts
https://airflow.apache.org/
https://cloud.google.com/docs/tutorials

