
1/25/2020 Best practices for building containers | Architectures | Google Cloud

https://cloud.google.com/solutions/best-practices-for-building-containers 1/16

This article describes a set of best practices for building containers. These practices cover a wide
range of goals, from shortening the build time, to creating smaller and more resilient images, with the
aim of making containers easier to build (for example, with Cloud Build (/cloud-build/docs/)), and
easier to run in Google Kubernetes Engine (GKE) (/kubernetes-engine/docs/).

These best practices are not of equal importance. For example, you might successfully run a
production workload without some of them, but others are fundamental. In particular, the importance
of the security-related best practices is subjective. Whether you implement them depends on your
environment and constraints.

To get the most out of this article, you need some knowledge of Docker and Kubernetes. Some best
practices discussed here also apply to Windows containers, but most assume that you are working
with Linux containers. Advice about running and operating containers is available in Best practices
for operating containers (/solutions/best-practices-for-operating-containers).

Importance: HIGH

In the context of this best practice, an "app" is considered to be a single piece of software, with a unique parent proce

otentially several child processes.

When you start working with containers, it's a common mistake to treat them as virtual machines that
can run many different things simultaneously. A container can work this way, but doing so reduces
most of the advantages of the container model. For example, take a classic Apache/MySQL/PHP
stack: you might be tempted to run all the components in a single container. However, the best
practice is to use two or three different containers: one for Apache, one for MySQL, and potentially
one for PHP if you are running PHP-FPM.

Because a container is designed to have the same lifecycle as the app it hosts, each of your
containers should contain only one app. When a container starts, so should the app, and when the
app stops, so should the container. The following diagram shows this best practice.

https://cloud.google.com/cloud-build/docs/
https://cloud.google.com/kubernetes-engine/docs/
https://cloud.google.com/solutions/best-practices-for-operating-containers

1/25/2020 Best practices for building containers | Architectures | Google Cloud

https://cloud.google.com/solutions/best-practices-for-building-containers 2/16

Container

Good example Bad example

Container

parent process

child process 1

child process 1.1

child process 1.2

child process 2

child process 2.1

parent process 1

child process 1.1

child process 1.2

parent process 2

child process 2.1

child process 2.2

Figure 1. The container on the left follows the best practice. The container on the right doesn't.

If you have multiple apps in a container, they might have different lifecycles, or be in different states.
For instance, you might end up with a container that is running, but with one of its core components
crashed or unresponsive. Without an additional health check, the overall container management
system (Docker or Kubernetes) cannot tell whether the container is healthy. In the case of Kubernetes,
it means that your container will not be restarted by default if needed.

You might see the following actions in public images, but do not follow their example:

Using a process management system such as supervisord (http://supervisord.org/) to manage
one or several apps in the container.

Using a bash script as an entrypoint in the container, and making it spawn several apps as
background jobs. For the proper use of bash scripts in containers, see Properly handle PID 1,
signal handling, and zombie processes (#signal-handling).

You might see o�cial images from fairly well-known vendors not implementing this best practice. Vendors do this be

eed several components to work, and they want the user to be able to run their software with a single docker run

and. While this approach is �ne for testing and experimenting, we don't recommend that you run these images in

ction.

http://supervisord.org/

1/25/2020 Best practices for building containers | Architectures | Google Cloud

https://cloud.google.com/solutions/best-practices-for-building-containers 3/16

Importance: HIGH

Linux signals are the main way to control the lifecycle of processes inside a container. In line with the
previous best practice, in order to tightly link the lifecycle of your app to the container it's in, ensure
that your app properly handles Linux signals. The most important Linux signal is SIGTERM because
it terminates a process. Your app might also receive a SIGKILL signal, which is used to kill the
process non-gracefully, or a SIGINT signal, which is sent when you type Ctrl+C and is usually treated
like SIGTERM.

Process identi�ers (PIDs) are unique identi�ers that the Linux kernel gives to each process. PIDs are
namespaced, meaning that a container has its own set of PIDs that are mapped to PIDs on the host
system. The �rst process launched when starting a Linux kernel has the PID 1. For a normal
operating system, this process is the init system, for example, systemd or SysV. Similarly, the �rst
process launched in a container gets PID 1. Docker and Kubernetes use signals to communicate with
the processes inside containers, most notably to terminate them. Both Docker and Kubernetes can
only send signals to the process that has PID 1 inside a container.

In the context of containers, PIDs and Linux signals create two problems to consider.

The Linux kernel handles signals differently for the process that has PID 1 than it does for other
processes. Signal handlers aren't automatically registered for this process, meaning that signals such
as SIGTERM or SIGINT will have no effect by default. By default, you must kill processes by using
SIGKILL, preventing any graceful shutdown. Depending on your app, using SIGKILL can result in user-
facing errors, interrupted writes (for data stores), or unwanted alerts in your monitoring system.

Classic init systems such as systemd are also used to remove (reap) orphaned, zombie processes.
Orphaned processes—processes whose parents have died—are reattached to the process that has
PID 1, which should reap them when they die. A normal init system does that. But in a container, this
responsibility falls on whatever process has PID 1. If that process doesn't properly handle the reaping,
you risk running out of memory or some other resources.

These problems have several common solutions, outlined in the following sections.

1/25/2020 Best practices for building containers | Architectures | Google Cloud

https://cloud.google.com/solutions/best-practices-for-building-containers 4/16

This solution addresses only the �rst problem. It is valid if your app spawns child processes in a
controlled way (which is often the case), avoiding the second problem.

The easiest way to implement this solution is to launch your process with the CMD and/or ENTRYPOINT
instructions in your Docker�le. For example, in the following Docker�le, nginx is the �rst and only
process to be launched.

ng: The nginx process registers its own signal handlers. With this solution, in many cases, you must do the same in y

ode.

Sometimes, you might need to prepare the environment in your container for your process to run
properly. In this case, the best practice is to have the container launch a shell script when starting.
This shell script is tasked with preparing the environment and launching the main process. However,
if you take this approach, the shell script has PID 1, not your process, which is why you must use the
built-in exec command to launch the process from the shell script. The exec command replaces the
script with the program you want. Your process then inherits PID 1.

When you enable process namespace sharing
 (https://kubernetes.io/docs/tasks/con�gure-pod-container/share-process-namespace/) for a Pod, Kubernetes

uses a single process namespace for all the containers in that Pod. The Kubernetes Pod
infrastructure container becomes PID 1 and automatically reaps orphaned processes.

As you would in a more classic Linux environment, you can also use an init system to deal with those
problems. However, normal init systems such as systemd or SysV are too complex and large for just

https://kubernetes.io/docs/tasks/configure-pod-container/share-process-namespace/

1/25/2020 Best practices for building containers | Architectures | Google Cloud

https://cloud.google.com/solutions/best-practices-for-building-containers 5/16

this purpose, which is why we recommend that you use an init system such as tini
 (https://github.com/krallin/tini), which is created especially for containers.

If you use a specialized init system, the init process has PID 1 and does the following:

Registers the correct signal handlers.

Makes sure that signals work for your app.

Reaps any eventual zombie processes.

You can use this solution in Docker itself by using the --init option of the docker run command. To
use this solution in Kubernetes, you must install the init system in your container image and use it as
the entrypoint for your container.

Importance: HIGH

The Docker build cache
 (https://docs.docker.com/develop/develop-images/docker�le_best-practices/#leverage-build-cache) can
accelerate the building of container images. Images are built layer by layer, and in a Docker�le, each
instruction creates a layer in the resulting image. During a build, when possible, Docker reuses a layer
from a previous build and skips a potentially costly step. Docker can use its build cache only if all
previous build steps used it. While this behavior is usually a good thing that makes builds go faster,
you need to consider a few cases.

For example, to fully bene�t from the Docker build cache, you must position the build steps that
change often at the bottom of the Docker�le. If you put them at the top, Docker cannot use its build
cache for the other build steps that are changing less often. Because a new Docker image is usually
built for each new version of your source code, add the source code to the image as late as possible
in the Docker�le. In the following diagram, you can see that if you are changing STEP 1, Docker can
reuse only the layers from the FROM debian:9 step. If you change STEP 3, however, Docker can reuse
the layers for STEP 1 and STEP 2.

https://github.com/krallin/tini
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/#leverage-build-cache

1/25/2020 Best practices for building containers | Architectures | Google Cloud

https://cloud.google.com/solutions/best-practices-for-building-containers 6/16

FROM debian:9
STEP 1
STEP 2
STEP 3

FROM debian:9
STEP 1
STEP 2
STEP 3

FROM debian:9

FROM debian:9
STEP 1
STEP 2
STEP 3

STEP 1.1
STEP 2
STEP 3

STEP 3.1

Figure 2. Examples of how to use the Docker build cache. In green, the layers that you can reuse. In red, the layers that have to

be recreated.

Reusing layers has another consequence: if a build step relies on any kind of cache stored on the
local �le system, this cache must be generated in the same build step. If this cache isn't being
generated, your build step might be executed with an out-of-date cache coming from a previous build.
You see this behavior most commonly with package managers such as apt or yum: you must update
your repositories in the same RUN command as your package installation.

If you change the second RUN step in the following Docker�le, the apt-get update command isn't
rerun, leaving you with an out-of-date apt cache.

Instead, merge the two commands in a single RUN step:

1/25/2020 Best practices for building containers | Architectures | Google Cloud

https://cloud.google.com/solutions/best-practices-for-building-containers 7/16

Importance: MEDIUM

To protect your apps from attackers, try to reduce the attack surface of your app by removing any
unnecessary tools. For example, remove utilities like netcat (http://netcat.sourceforge.net/), which you
can use to create a reverse shell inside your system. If netcat isn't in the container, the attacker has to
�nd another way.

This best practice is true for any workload, even if it isn't containerized. The difference is that it is
much simpler to implement with containers than it is with classic virtual machines or bare-metal
servers.

Some of those tools might be useful for debugging. For example, if you push this best practice far
enough, exhaustive logs, tracing, pro�ling, and Application Performance Management (/apm/)

systems become almost mandatory. In effect, you can no longer rely on local debugging tools
because they are often highly privileged.

The �rst part of this best practice deals with the content of the container image. Keep as few things
as possible in your image. If you can compile your app into a single statically linked binary, adding
this binary to the scratch image (https://hub.docker.com/_/scratch/) allows you to get a �nal image that
contains only your app and nothing else. By reducing the number of tools packaged in your image,
you reduce what a potential attacker can do in your container. For more information, see Build the
smallest image possible (#build-the-smallest-image-possible).

Having no tools in your image isn't su�cient: you must prevent potential attackers from installing
their own tools. You can combine two methods here:

Avoid running as root inside the container: this method offers a �rst layer of security and could
prevent, for example, attackers from modifying root-owned �les using a package manager
embedded in your image (such as apt-get or apk). For this method to be useful, you must
disable or uninstall the sudo command. This topic is more broadly covered in Avoid running as
root (/solutions/best-practices-for-operating-containers#avoid_running_as_root).

Launch the container in read-only mode, which you do by using the --read-only �ag from the
docker run command or by using the readOnlyRootFilesystem option in Kubernetes. You can

http://netcat.sourceforge.net/
https://cloud.google.com/apm/
https://hub.docker.com/_/scratch/
https://cloud.google.com/solutions/best-practices-for-operating-containers#avoid_running_as_root

1/25/2020 Best practices for building containers | Architectures | Google Cloud

https://cloud.google.com/solutions/best-practices-for-building-containers 8/16

enforce this in Kubernetes by using a PodSecurityPolicy
 (https://kubernetes.io/docs/concepts/policy/pod-security-policy/#volumes-and-�le-systems).

ng: If your app needs to write temporary data to disk, you can still use the readOnlyRootFilesystem option and ad

Dir volume (https://kubernetes.io/docs/concepts/storage/volumes/#emptydir) for your temporary �les. Kubernete

t support mount options on emptyDir (https://github.com/kubernetes/kubernetes/issues/48912) volumes, so you

t mount this volume with the noexec �ag enabled, meaning that an attacker could drop a binary in this volume and

te it.

Importance: MEDIUM

Building a smaller image offers advantages such as faster upload and download times, which is
especially important for the cold start time of a pod in Kubernetes: the smaller the image, the faster
the node can download it. However, building a small image can be di�cult because you might
inadvertently include build dependencies or unoptimized layers in your �nal image.

This blog post
s://cloudplatform.googleblog.com/2018/04/Kubernetes-best-practices-how-and-why-to-build-small-container-
s.html)

ns a lot of useful information on this topic, with language-speci�c examples.

The base image is the one referenced in the FROM instruction in your Docker�le. Every other instruction
in the Docker�le builds on top of this image. The smaller the base image, the smaller the resulting
image is, and the more quickly it can be downloaded. For example, the alpine:3.7
 (https://hub.docker.com/r/library/alpine/tags/) image is 71 MB smaller than the centos:7
 (https://hub.docker.com/r/library/centos/tags/) image.

You can even use the scratch (https://hub.docker.com/r/library/scratch/) base image, which is an empty
image on which you can build your own runtime environment. If your app is a statically linked binary,
it's easy to use the scratch base image:

https://kubernetes.io/docs/concepts/policy/pod-security-policy/#volumes-and-file-systems
https://kubernetes.io/docs/concepts/storage/volumes/#emptydir
https://github.com/kubernetes/kubernetes/issues/48912
https://cloudplatform.googleblog.com/2018/04/Kubernetes-best-practices-how-and-why-to-build-small-container-images.html
https://hub.docker.com/r/library/alpine/tags/
https://hub.docker.com/r/library/centos/tags/
https://hub.docker.com/r/library/scratch/

1/25/2020 Best practices for building containers | Architectures | Google Cloud

https://cloud.google.com/solutions/best-practices-for-building-containers 9/16

The distroless (https://github.com/GoogleContainerTools/distroless) project provides you with minimal
base images for a number of different languages. The images contain only the runtime
dependencies for the language, but don't include many tools you would expect in a Linux distribution,
such as shells or package managers.

To reduce the size of your image, install only what is strictly needed inside it. It might be tempting to
install extra packages, and then remove them at a later step. However, this approach isn't su�cient.
Because each instruction of the Docker�le creates a layer, removing data from the image in a later
step than the step that created it doesn't reduce the size of the overall image (the data is still there,
just hidden in a deeper layer). Consider this example:

Bad Docker�le Good Docker�le

In the bad version of the Docker�le, the [buildpackage] and �les in /var/lib/apt/lists/* still exist
in the layer corresponding to the �rst RUN. This layer is part of the image and must be uploaded and
downloaded with the rest, even if the data it contains isn't accessible in the resulting image.

In the good version of the Docker�le, everything is done in a single layer that contains only your built
app. The [buildpackage] and �les in /var/lib/apt/lists/* don't exist anywhere in the resulting
image, not even hidden in a deeper layer.

For more information on image layers, see Optimize for the Docker build cache
 (#optimize-for-the-docker-build-cache).

Another great way to reduce the amount of clutter in your image is to use multi-staged builds
(introduced in Docker 17.05). Multi-stage builds allow you to build your app in a �rst "build" container
and use the result in another container, while using the same Docker�le.

https://github.com/GoogleContainerTools/distroless

1/25/2020 Best practices for building containers | Architectures | Google Cloud

https://cloud.google.com/solutions/best-practices-for-building-containers 10/16

Build container Final container image

Build tools Runtime environment

Build process

Source code

Built application Built application
COPY

Figure 3. The Docker multi-stage build process.

In the following Docker�le, the hello binary is built in a �rst container and injected in a second one.
Because the second container is based on scratch (https://hub.docker.com/r/library/scratch/), the
resulting image contains only the hello binary and not the source �le and object �les needed during
the build. The binary must be statically linked in order to work without the need for any outside library
in the scratch image.

If you must download a Docker image, Docker �rst checks whether you already have some of the
layers that are in the image. If you do have those layers, they aren't downloaded. This situation can
occur if you previously downloaded another image that has the same base as the image you are
currently downloading. The result is that the amount of data downloaded is much less for the second
image.

https://hub.docker.com/r/library/scratch/

1/25/2020 Best practices for building containers | Architectures | Google Cloud

https://cloud.google.com/solutions/best-practices-for-building-containers 11/16

At an organizational level, you can take advantage of this reduction by providing your developers
with a set of common, standard, base images. Your systems must download each base image only
once. After the initial download, only the layers that make each image unique are needed. In effect,
the more your images have in common, the faster they are to download.

FROM node:9.11.1

ADD src_app1 /src/

RUN cd /src && \
 npm install

FROM node:9.11.1

ADD src_app2 /src/

RUN cd /src && \
 npm install

Dockerfile App 1 Dockerfile App 2

Common layers, downloaded only once

Layers unique to each image

Figure 4. Creating images with common layers.

Importance: MEDIUM

Software vulnerabilities are a well-understood problem in the world of bare-metal servers and virtual
machines. A common way to address these vulnerabilities is to use a centralized inventory system
that lists the packages installed on each server. Subscribe to the vulnerability feeds of the upstream
operating systems to be informed when a vulnerability affects your servers, and patch them
accordingly.

However, because containers are supposed to be immutable (see statelessness and immutability of
containers (/solutions/best-practices-for-operating-containers#statelessness) for more details), don't patch
them in place in case of a vulnerability. The best practice is to rebuild the image, patches included,
and redeploy it. Containers have a much shorter lifecycle and a less well-de�ned identity than servers.
So using a similar centralized inventory system is a poor way to detect vulnerabilities in containers.

To help you address this problem, Container Registry (/container-registry/docs/) has a vulnerability
scanning (/container-registry/docs/vulnerability-scanning) feature. When enabled, this feature identi�es

https://cloud.google.com/solutions/best-practices-for-operating-containers#statelessness
https://cloud.google.com/container-registry/docs/
https://cloud.google.com/container-registry/docs/vulnerability-scanning

1/25/2020 Best practices for building containers | Architectures | Google Cloud

https://cloud.google.com/solutions/best-practices-for-building-containers 12/16

package vulnerabilities for your container images. Images are scanned when they are uploaded to
Container Registry and whenever there is an update to the vulnerability database. You can act on the
information reported by this feature in several ways:

Create a cron-like job that lists vulnerabilities and triggers the process to �x them, where a �x
exists,

As soon as a vulnerability is detected, use the Pub/Sub integration
 (/container-registry/docs/vulnerability-scanning#pubsub_name_noti�cations) to trigger the patching
process that your organization uses.

We recommend automating the patching process and relying on the existing continuous integration
pipeline initially used to build the image. If you are con�dent in your continuous deployment pipeline,
you might also want to automatically deploy the �xed image when ready. However, most people
prefer a manual veri�cation step before deployment. The following process achieves that:

1. Store your images in Container Registry and enable vulnerability scanning.

2. Con�gure a job that regularly fetches new vulnerabilities from Container Registry and triggers a
rebuild of the images if needed.

3. When the new images are built, have your continuous deployment system deploy them to a
staging environment.

4. Manually check the staging environment for problems.

5. If no problems are found, manually trigger the deployment to production.

At the time of this writing, vulnerability scanning is available for images based on Alpine, Debian, Ubuntu, Red Hat

prise Linux, and CentOS.

Importance: MEDIUM

Docker images are generally identi�ed by two components: their name and their tag. For example, for
the google/cloud-sdk:193.0.0 image, google/cloud-sdk is the name and 193.0.0 is the tag. The tag
latest is used by default if you don't provide one in your Docker commands. The name and tag pair
is unique at any given time. However, you can reassign a tag to a different image as needed.

When you build an image, it's up to you to tag it properly. Follow a coherent and consistent tagging
policy. Document your tagging policy so that image users can easily understand it.

https://cloud.google.com/container-registry/docs/vulnerability-scanning#pubsub_name_notifications

1/25/2020 Best practices for building containers | Architectures | Google Cloud

https://cloud.google.com/solutions/best-practices-for-building-containers 13/16

Container images are a way of packaging and releasing a piece of software. Tagging the image lets
users identify a speci�c version of your software in order to download it. For this reason, tightly link
the tagging system on container images to the release policy of your software.

A common way of releasing software is to "tag" (as in the git tag command) a particular version of
the source code with a version number. The Semantic Versioning Speci�cation (https://semver.org/)

provides a clean way of handling version numbers. In this system, your software has a three-part
version number: X.Y.Z, where:

X is the major version, incremented only for incompatible API changes.

Y is the minor version, incremented for new features.

Z is the patch version, incremented for bug �xes.

Every increment in the minor or patch version number must be for a backward-compatible change.

If you use this system, or a similar one, tag your images according to the following policy:

The latest tag always refers to the most recent (possibly stable) image. This tag is moved as
soon as a new image is created.

The X.Y.Z tag refers to a speci�c version of your software. Don't move it to another image.

The X.Y tag refers to the latest patch release of the X.Y minor branch of your software. It's
moved when a new patch version is released.

The X tag refers to the latest patch release of the latest minor release of the X major branch. It's
moved when either a new patch version or a new minor version is released.

Using this policy offers users the �exibility to choose which version of your software they want to
use. They can pick a speci�c X.Y.Z version and be guaranteed that the image will never change, or
they can get updates automatically by choosing a less speci�c tag.

If you have an advanced continuous delivery system and you release your software often, you
probably don't use version numbers as described in the Semantic Versioning Speci�cation. In this
case, a common way of handling version numbers is to use the Git commit SHA-1 hash (or a short
version of it) as the version number. By design, the Git commit hash is immutable and references a
speci�c version of your software.

https://semver.org/

1/25/2020 Best practices for building containers | Architectures | Google Cloud

https://cloud.google.com/solutions/best-practices-for-building-containers 14/16

You can use this commit hash as a version number for your software, but also as a tag for the
Docker image built from this speci�c version of your software. Doing so makes Docker images
traceable: because in this case the image tag is immutable, you instantly know which speci�c version
of your software is running inside a given container. In your continuous delivery pipeline, automate
the update of the version number used for your deployments.

Importance: N/A

Strictly speaking, this statement isn't a best practice, but a topic that you must address during your container journey

zation and its constraints shape the solutions you choose.

One of the great advantages of Docker is the sheer number of publicly available images, for all kinds
of software. These images allow you to get started quickly. However, when you are designing a
container strategy for your organization, you might have constraints that publicly provided images
aren't able to meet. Here are a few examples of constraints that might render the use of public
images impossible:

You want to control exactly what is inside your images.

You don't want to depend on an external repository.

You want to strictly control vulnerabilities in your production environment.

You want the same base operating system in every image.

The response to all those constraints is the same, and is unfortunately costly: you must build your
own images. Building your own images is �ne for a limited number of images, but this number has a
tendency to grow quickly. To have any chance of managing such a system at scale, think about
using the following:

An automated way to build images, in a reliable way, even for images that are built rarely. Build
triggers (/cloud-build/docs/running-builds/automate-builds) in Cloud Build are a good way to achieve
that.

A standardized base image. Google provides some base images
 (https://github.com/GoogleContainerTools/base-images-docker) that you can use.

An automated way to propagate updates to the base image to "child" images.

https://cloud.google.com/cloud-build/docs/running-builds/automate-builds
https://github.com/GoogleContainerTools/base-images-docker

1/25/2020 Best practices for building containers | Architectures | Google Cloud

https://cloud.google.com/solutions/best-practices-for-building-containers 15/16

A way to address vulnerabilities in your images. For more information, see Use vulnerability
analysis in Container Registry (#heading=h.qtg3gwa1gg9u).

A way to enforce your internal standards on images created by the different teams in your
organization.

Several tools are available to help you enforce policies on the images that you build and deploy:

container-diff (https://github.com/GoogleCloudPlatform/container-diff) can analyze the content of
images and even compare two images between them.

container-structure-test (https://github.com/GoogleCloudPlatform/container-structure-test) can test
whether the content of an image complies with a set of rules that you de�ne.

Grafeas (https://grafeas.io/) is an artifact metadata API, where you store metadata about your
images to later check whether those images comply with your policies.

Kubernetes has admission controllers
 (https://kubernetes.io/docs/reference/access-authn-authz/admission-
controllers/#validatingadmissionwebhook)

that you can use to check a number of prerequisites before deploying a workload in Kubernetes.

Kubernetes also has pod security policies
 (https://kubernetes.io/docs/concepts/policy/pod-security-policy/), that you can use to enforce the use
of security options in the cluster.

You might also want to adopt a hybrid system: using a public image such as Debian or Alpine as the
base image and building everything on top of that image. Or you might want to use public images for
some of your noncritical images, and build your own images for other cases. Those questions have
no right or wrong answers, but you have to address them.

Before you include third-party libraries and packages in your Docker image, ensure that the respective
licenses allow you to do so. Third-party licenses might also impose restrictions on redistribution,
which apply when you publish a Docker image to a public registry.

Learn about Best practices for operating containers
 (/solutions/best-practices-for-operating-containers).

https://github.com/GoogleCloudPlatform/container-diff
https://github.com/GoogleCloudPlatform/container-structure-test
https://grafeas.io/
https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/#validatingadmissionwebhook
https://kubernetes.io/docs/concepts/policy/pod-security-policy/
https://cloud.google.com/solutions/best-practices-for-operating-containers

1/25/2020 Best practices for building containers | Architectures | Google Cloud

https://cloud.google.com/solutions/best-practices-for-building-containers 16/16

Build your �rst containers with Cloud Build (/cloud-build/docs/quickstart-docker).

Spin up your �rst GKE cluster (/kubernetes-engine/docs/quickstart).

Speed up your Cloud Build builds (/cloud-build/docs/speeding-up-builds).

Preparing a GKE environment for production (/solutions/prep-kubernetes-engine-for-prod).

Docker has its own set of best practices
 (https://docs.docker.com/develop/develop-images/docker�le_best-practices/), some of which are
covered in this document.

Try out other Google Cloud features for yourself. Have a look at our tutorials (/docs/tutorials).

https://cloud.google.com/cloud-build/docs/quickstart-docker
https://cloud.google.com/kubernetes-engine/docs/quickstart
https://cloud.google.com/cloud-build/docs/speeding-up-builds
https://cloud.google.com/solutions/prep-kubernetes-engine-for-prod
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://cloud.google.com/docs/tutorials

