
1/25/2020 Setting up a CI/CD pipeline for your data-processing workflow

https://cloud.google.com/solutions/cicd-pipeline-for-data-processing/ 1/15

This tutorial describes how to set up a continuous integration/continuous deployment (CI/CD) pipeline for processing data by implementing
CI/CD methods with managed products on Google Cloud. Data scientists and analysts can adapt the methodologies from CI/CD practices to
help to ensure high quality, maintainability, and adaptability of the data processes and work�ows. The methods that you can apply are as
follows:

Version control of source code.

Automatic building, testing, and deployment of apps.

Environment isolation and separation from production.

Replicable procedures for environment setup.

This tutorial is intended for data scientists and analysts who build recurrent running data-processing jobs to help structure their research and
development (R&D) to systematically and automatically maintain data-processing workloads.

In this guide, you use the following Google Cloud products:

Cloud Build (/cloud-build/) to create a CI/CD pipeline for building, deploying, and testing a data-processing work�ow, and the data
processing itself. Cloud Build is a managed service that runs your build on Google Cloud. A build is a series of build steps where each
step is run in a Docker container.

Cloud Composer (/composer/) to de�ne and run the steps of the work�ow, such as starting the data processing, testing and verifying
results. Cloud Composer is a managed Apache Air�ow  (https://air�ow.apache.org/) service, which offers an environment where you can
create, schedule, monitor, and manage complex work�ows, such as the data-processing work�ow in this tutorial.

Data�ow (/data�ow/) to run the Apache Beam WordCount  (https://beam.apache.org/get-started/wordcount-example/#wordcount-example)

example as a sample data process.

At a high level, the CI/CD pipeline consists of the following steps:

1. Cloud Build packages the WordCount sample into a self-running Java Archive (JAR) �le using the Maven builder
 (https://github.com/GoogleCloudPlatform/cloud-builders/tree/master/mvn). The Maven builder is a container with Maven installed in it. When a
build step is con�gured to use the Maven builder, Maven runs the tasks.

2. Cloud Build uploads the JAR �le to Cloud Storage.

3. Cloud Build runs unit tests on the data-processing work�ow code and deploys the work�ow code to Cloud Composer.

4. Cloud Composer picks up the JAR �le and runs the data-processing job on Data�ow.

The following diagram shows a detailed view of the CI/CD pipeline steps.

https://cloud.google.com/cloud-build/
https://cloud.google.com/composer/
https://airflow.apache.org/
https://cloud.google.com/dataflow/
https://beam.apache.org/get-started/wordcount-example/#wordcount-example
https://github.com/GoogleCloudPlatform/cloud-builders/tree/master/mvn


1/25/2020 Setting up a CI/CD pipeline for your data-processing workflow

https://cloud.google.com/solutions/cicd-pipeline-for-data-processing/ 2/15

GoogleCloud
Platform

Cloud Source
Repositories

Dataflow
Source
Code

Cloud Composer
DAG

Source Code

Cloud
Build

Test
pipeline

Prod
pipeline

2
Trigger
test
build

Cloud
Storage

Test: Input
bucket

Test: Ref
bucket

Test: JAR
bucket

Prod: JAR
bucket

Cloud
Composer
DAGbucket

4
Deploy
test
files

3
Build and
Deploy
Cloud
Dataflow
exe-JAR

5 Set Cloud
Composer
variable to
reference
the new JAR Cloud

Composer
Test
DAG

Prod
DAG

7

6
Test and
deploy
Test DAG

Auto
triggered
Test DAG
deployment
to
Cloud
Composer

8
Trigger
data
processing
workflow
execution
in test

1
Manually
run
Prod
deployment
pipeline

2
Copy JAR
from
Test
bucket
to Prod
bucket

3
Test and
deploy
Prod DAG

Auto
triggered
Prod DAG
deployment
to
Cloud
Composer

4

Test pipeline
steps

Developers

1
Commit
code
changes

Prod pipeline steps

In this tutorial, the deployments to the test and production environments are separated into two different Cloud Build pipelines–a test and a
production pipeline.

In the preceding diagram, the test pipeline consists of the following steps:

1. A developer commits code changes to the Cloud Source Repositories.

2. Code changes trigger a test build in Cloud Build.

3. Cloud Build builds the self-executing JAR �le and deploys it to the test JAR bucket on Cloud Storage.

4. Cloud Build deploys the test �les to the test-�le buckets on Cloud Storage.

5. Cloud Build sets the variable in Cloud Composer to reference the newly deployed JAR �le.

6. Cloud Build tests the data-processing work�ow Directed Acyclic Graph  (https://air�ow.apache.org/concepts.html) (DAG) and deploys it to the
Cloud Composer bucket on Cloud Storage.

7. The work�ow DAG �le is deployed to Cloud Composer.

8. Cloud Build triggers the newly deployed data-processing work�ow to run.

In the preceding diagram, the production pipeline consists of the following steps:

1. A developer manually runs the production deployment pipeline in Cloud Build.

2. Cloud Build copies the latest self-executing JAR �le from the test JAR bucket to the production JAR bucket on Cloud Storage.

3. Cloud Build tests the production data-processing work�ow DAG and deploys it to the Cloud Composer bucket on Cloud Storage.

4. The production work�ow DAG �le is deployed to Cloud Composer.

In this tutorial, the production data-processing work�ow is deployed to the same Cloud Composer environment as the test work�ow, to give a
consolidated view of all data-processing work�ows. For the purposes of this tutorial, the environments are separated by using different Cloud
Storage buckets to hold the input and output data.

To completely separate the environments, you need multiple Cloud Composer environments created in different projects, which are by default
separated from each other. This separation helps to secure your production environment. This approach is outside the scope of this tutorial. For
more information about how to access resources across multiple Google Cloud projects, see Setting service account permissions
 (/cloud-build/docs/securing-builds/set-service-account-permissions).

https://airflow.apache.org/concepts.html
https://cloud.google.com/cloud-build/docs/securing-builds/set-service-account-permissions


1/25/2020 Setting up a CI/CD pipeline for your data-processing workflow

https://cloud.google.com/solutions/cicd-pipeline-for-data-processing/ 3/15

The instructions for how Cloud Composer runs the data-processing work�ow are de�ned in a Directed Acyclic Graph
 (https://air�ow.apache.org/concepts.html) (DAG) written in Python. In the DAG, all the steps of the data-processing work�ow are de�ned together

with the dependencies between them.

The CI/CD pipeline automatically deploys the DAG de�nition from Cloud Source Repositories to Cloud Composer in each build. This process
ensures that Cloud Composer is always up to date with the latest work�ow de�nition without needing any human intervention.

In the DAG de�nition for the test environment, an end-to-end test step is de�ned in addition to the data-processing work�ow. The test step helps
make sure that the data-processing work�ow runs correctly.

The data-processing work�ow is illustrated in the following diagram.

The data-processing work�ow consists of the following steps:

1. Run the WordCount data process in Data�ow.

2. Download the output �les from the WordCount process. The WordCount process outputs three �les:

download_result_1

download_result_2

download_result_3

3. Download the reference �le, called download_ref_string.

4. Verify the result against the reference �le. This integration test aggregates all three results and compares the aggregated results with the
reference �le.

Using a task-orchestration framework such as Cloud Composer to manage the data-processing work�ow helps alleviate the code complexity of
the work�ow.

In addition to the integration test that veri�es the data-processing work�ow from end to end, there are two unit tests in this tutorial. The unit
tests are automatic tests on the data-processing code and the data-processing work�ow code. The test on the data-processing code is written
in Java and runs automatically during the Maven build process. The test on the data-processing work�ow code is written in Python and runs as
an independent build step.

Con�gure the Cloud Composer environment.

Create Cloud Storage buckets for your data.

Create the build, test, and production pipelines.

Con�gure the build trigger.

https://airflow.apache.org/concepts.html


1/25/2020 Setting up a CI/CD pipeline for your data-processing workflow

https://cloud.google.com/solutions/cicd-pipeline-for-data-processing/ 4/15



This tutorial uses the following billable components of Google Cloud:

Cloud Source Repositories (/source-repositories/pricing)

Cloud Build (/cloud-build/pricing)

Cloud Composer (/composer/pricing)

Data�ow (/data�ow/pricing)

Cloud Storage (/storage/pricing)

To generate a cost estimate based on your projected usage, use the pricing calculator (/products/calculator). New Google Cloud users might be
eligible for a free trial (/free-trial).

When you �nish this tutorial, you can avoid continued billing by deleting the resources you created. For more information, see Cleaning up
 (#clean-up).

1. Sign in (https://accounts.google.com/Login) to your Google Account.

If you don't already have one, sign up for a new account (https://accounts.google.com/SignUp).

2. In the Cloud Console, on the project selector page, select or create a Cloud project.

Note: If you don't plan to keep the resources that you create in this procedure, create a project instead of selecting an existing project. After you �nish these

steps, you can delete the project, removing all resources associated with the project.

Go to the project selector page (https://console.cloud.google.com/projectselector2/home/dashboard)

3. Make sure that billing is enabled for your Google Cloud project. Learn how to con�rm billing is enabled for your project
 (/billing/docs/how-to/modify-project).

4. Enable the Cloud Build, Cloud Source Repositories, Cloud Composer, and Data�ow APIs.

Enable the APIs (https://console.cloud.google.com/�ows/enableapi?apiid=cloudbuild.googleapis.com,sourcerepo.googleapis.com,composer.googleapis.com

The sample code is in two folders:

The env-setup folder contains shell scripts for the initial setup of the Google Cloud environment.

The source-code folder contains code that is developed over time, needs to be source controlled, and triggers automatic build and test
processes. This folder contains the following subfolders:

The data-processing-code folder contains the Apache Beam process source code.

The workflow-dag folder contains the composer DAG de�nitions for the data-processing work�ows with the steps to design,
implement, and test the Data�ow process.

The build-pipeline folder contains two Cloud Build con�gurations—one for the test pipeline and the other for the production
pipeline. This folder also contains a support script for the pipelines.

For the purpose of this tutorial, the source code �les for data processing and for DAG work�ow are in different folders in the same source code
repository. In a production environment, the source code �les are usually in their own source code repositories and are managed by different
teams.

https://cloud.google.com/source-repositories/pricing
https://cloud.google.com/cloud-build/pricing
https://cloud.google.com/composer/pricing
https://cloud.google.com/dataflow/pricing
https://cloud.google.com/storage/pricing
https://cloud.google.com/products/calculator
https://cloud.google.com/free-trial
https://accounts.google.com/Login
https://accounts.google.com/SignUp
https://console.cloud.google.com/projectselector2/home/dashboard
https://cloud.google.com/billing/docs/how-to/modify-project
https://console.cloud.google.com/flows/enableapi?apiid=cloudbuild.googleapis.com,sourcerepo.googleapis.com,composer.googleapis.com,dataflow.googleapis.com


1/25/2020 Setting up a CI/CD pipeline for your data-processing workflow

https://cloud.google.com/solutions/cicd-pipeline-for-data-processing/ 5/15



In this tutorial, you run all commands in Cloud Shell (/shell/docs/features). Cloud Shell appears as a window at the bottom of the Google Cloud
Console.

1. In the Cloud Console, open Cloud Shell:

Open Cloud Shell (https://console.cloud.google.com/?cloudshell=true)

2. Clone the sample code repository:

3. Run a script to set environment variables:

The script sets the following environment variables:

Your Google Cloud project ID

Your region and zone

The name of your Cloud Storage buckets that are used by the build pipeline and the data-processing work�ow.

Because environment variables aren't retained between sessions, if your Cloud Shell session shuts down or disconnects while you are
working through the tutorial, you need to reset the environment variables.

In this tutorial, you set up a Cloud Composer environment that consists of n1-standard-1 nodes.

1. In Cloud Shell, create the Cloud Composer environment:

Note: It usually takes about 15 minutes to provision the Cloud Composer environment, but it can take up to one hour. Wait until this process is completed

before continuing onto the next steps.

2. Run a script to set the variables in the Cloud Composer environment. The variables are needed for the data-processing DAGs.

The script sets the following environment variables:

Your Google Cloud project ID

https://cloud.google.com/shell/docs/features
https://console.cloud.google.com/?cloudshell=true


1/25/2020 Setting up a CI/CD pipeline for your data-processing workflow

https://cloud.google.com/solutions/cicd-pipeline-for-data-processing/ 6/15

Your region and zone

The name of your Cloud Storage buckets that are used by the build pipeline and the data-processing work�ow.

Cloud Composer uses a Cloud Storage bucket to store DAGs. Moving a DAG de�nition �le to the bucket triggers Cloud Composer to
automatically read the �les. You created the Cloud Storage bucket for Cloud Composer when you created the Cloud Composer environment. In
the following procedure, you extract the URL for the buckets, and then con�gure your CI/CD pipeline to automatically deploy DAG de�nitions to
the Cloud Storage bucket.

1. In Cloud Shell, export the URL for the bucket as an environment variable:

2. Export the name of the service account that Cloud Composer uses in order to have access to the Cloud Storage buckets:

In this section you create a set of Cloud Storage buckets to store the following:

Artifacts of the intermediate steps of the build process.

The input and output �les for the data-processing work�ow.

The staging location for the Data�ow jobs to store their binary �les.

To create the Cloud Storage buckets, complete the following step:

In Cloud Shell, create Cloud Storage buckets and give the Cloud Composer service account permission to run the data-processing
work�ows:

In this tutorial, you have one source code base that you need to put into version control. The following step shows how a code base is
developed and changes over time. Whenever changes are pushed to the repository, the pipeline to build, deploy, and test is triggered.

In Cloud Shell, push the source-code folder to Cloud Source Repositories:



1/25/2020 Setting up a CI/CD pipeline for your data-processing workflow

https://cloud.google.com/solutions/cicd-pipeline-for-data-processing/ 7/15

These are standard commands to initialize Git in a new directory and push the content to a remote repository.

In this section, you create the build pipelines that build, deploy, and test the data-processing work�ow.

Cloud Build deploys Cloud Composer DAGs and triggers work�ows, which are enabled when you add additional access to the Cloud Build
service account. For more information about the different roles available when working with Cloud Composer, see the access control
documentation (/composer/docs/how-to/access-control#roles).

1. In Cloud Shell, add the composer.admin role to the Cloud Build service account so the Cloud Build job can set Air�ow variables in Cloud
Composer:

2. Add the composer.worker role to the Cloud Build service account so the Cloud Build job can trigger the data work�ow in Cloud Composer:

The build and test pipeline steps are con�gured in the YAML con�guration �le (/cloud-build/docs/con�guring-builds/create-basic-con�guration). In this
tutorial, you use prebuilt builder images (/cloud-build/docs/cloud-builders) for git, maven, gsutil, and gcloud to run the tasks in each build step.
You use con�guration variable substitutions (/cloud-build/docs/build-con�g#substitutions) to de�ne the environment settings at build time. The
source code repository location is de�ned by variable substitutions, as well as the locations of Cloud Storage buckets. The build needs this
information to deploy the JAR �le, test �les, and the DAG de�nition.

In Cloud Shell, submit the build pipeline con�guration �le to create the pipeline in Cloud Build:

This command instructs Cloud Build to run a build with the following steps:

1. Build and deploy the WordCount self-executing JAR �le.

https://cloud.google.com/composer/docs/how-to/access-control#roles
https://cloud.google.com/cloud-build/docs/configuring-builds/create-basic-configuration
https://cloud.google.com/cloud-build/docs/cloud-builders
https://cloud.google.com/cloud-build/docs/build-config#substitutions


1/25/2020 Setting up a CI/CD pipeline for your data-processing workflow

https://cloud.google.com/solutions/cicd-pipeline-for-data-processing/ 8/15

a. Check out the source code.

b. Compile the WordCount Beam source code into a self-executing JAR �le.

c. Store the JAR �le on Cloud Storage where it can be picked up by Cloud Composer to run the WordCount processing job.

2. Deploy and set up the data-processing work�ow on Cloud Composer.

a. Run the unit test on the custom-operator code used by the work�ow DAG.

b. Deploy the test input �le and the test reference �le on Cloud Storage. The test input �le is the input for the WordCount
processing job. The test reference �le is used as a reference to verify the output of the WordCount processing job.

c. Set the Cloud Composer variables to point to the newly built JAR �le.

d. Deploy the work�ow DAG de�nition to the Cloud Composer environment.

3. Run the data-processing work�ow in the test environment to trigger the test-processing work�ow.

After you submit the build �le, verify the build steps.

1. In the Cloud Console, go to the Build History page to view a list of all past and currently running builds.

Go to Build History page (https://console.cloud.google.com/cloud-build)

2. Click the build that is currently running.

3. On the Build details page, verify that the build steps match the previously described steps.

https://console.cloud.google.com/cloud-build


1/25/2020 Setting up a CI/CD pipeline for your data-processing workflow

https://cloud.google.com/solutions/cicd-pipeline-for-data-processing/ 9/15

On the Build details page, the Status �eld of the build says Build successful when the build �nishes.

4. In Cloud Shell, verify that the WordCount sample JAR �le was copied into the correct bucket:

The output is similar to the following:

5. Get the URL to your Cloud Composer web interface. Make a note of the URL because it's used in the next step.

6. Use the URL from the previous step to go to the Cloud Composer UI to verify a successful DAG run. If the Dag Runs column doesn't
display any information, wait a few minutes and reload the page.

a. To verify that the data-processing work�ow DAG test_word_count is deployed and is in running mode, hold the pointer over the
light-green circle below DAG Runs and verify that it says Running.



1/25/2020 Setting up a CI/CD pipeline for your data-processing workflow

https://cloud.google.com/solutions/cicd-pipeline-for-data-processing/ 10/15

b. To see the running data-processing work�ow as a graph, click the light-green circle, and then on the Dag Runs page, click Dag Id:
test_word_count.

c. Reload the Graph View page to update the state of the current DAG run. It usually takes between three to �ve minutes for the
work�ow to �nish. To verify that the DAG run �nishes successfully, hold the pointer over each task to verify that the tooltip says
State: success. The last task, named do_comparison, is the integration test that veri�es the process output against the reference �le.

When the test processing work�ow runs successfully, you can promote the current version of the work�ow to production. There are several
ways to deploy the work�ow to production:

Manually.

Automatically triggered when all the tests pass in the test or staging environments.

Automatically triggered by a scheduled job.

The automatic approaches are beyond the scope of this tutorial. For more information, see Release Engineering
 (https://landing.google.com/sre/sre-book/chapters/release-engineering/).

In this tutorial, you do a manual deployment to production by running the Cloud Build production deployment build. The production deployment
build follows these steps:

1. Copy the WordCount JAR �le from the test bucket to the production bucket.

2. Set the Cloud Composer variables for the production work�ow to point to the newly promoted JAR �le.

3. Deploy the production work�ow DAG de�nition on the Cloud Composer environment and running the work�ow.

Variable substitutions de�ne the name of the latest JAR �le that is deployed to production with the Cloud Storage buckets used by the
production processing work�ow. To create the Cloud Build pipeline that deploys the production air�ow work�ow, complete the following steps:

1. In Cloud Shell, read the �lename of the latest JAR �le by printing the Cloud Composer variable for the JAR �lename:

2. Use the build pipeline con�guration �le, deploy_prod.yaml, to create the pipeline in Cloud Build:

https://landing.google.com/sre/sre-book/chapters/release-engineering/


1/25/2020 Setting up a CI/CD pipeline for your data-processing workflow

https://cloud.google.com/solutions/cicd-pipeline-for-data-processing/ 11/15

1. Get the URL for your Cloud Composer UI:

2. To verify that the production data-processing work�ow DAG is deployed, go to the URL that you retrieved in the previous step and verify
that prod_word_count DAG is in the list of DAGs.

a. On the DAGs page, in the prod_word_count row, click Trigger Dag.

b. In the Con�rmation dialog, click Con�rm.

3. Reload the page to update the DAG run status. To verify that the production data-processing work�ow DAG is deployed and is in running
mode, hold the pointer over the light-green circle below DAG Runs and verify that it says Running.

4. After the run succeeds, hold the pointer over the dark-green circle below the DAG runs column and verify that it says Success.

5. In Cloud Shell, list the result �les in the Cloud Storage bucket:

The output is similar to the following:

Note: Typically, the production data work�ow job execution is either triggered by events, such as �les being stored in buckets, or is scheduled to run on a regular

basis. It's important that the deployment job ensures that production data work�ow isn't currently running before you deploy. In a production environment, you can

use dag_state  (http://air�ow.apache.org/cli.html#dag_state) of the Air�ow CLI commands (/composer/docs/how-to/accessing/air�ow-cli) to retrieve the status

of a DAG run.

You set up a Cloud Build trigger (/cloud-build/docs/running-builds/automate-builds) that triggers a new build when changes are pushed to the master
branch of the source repository.

1. In Cloud Shell, run the following command to get all the substitution variables needed for the build. Make a note of these values because
they are needed in a later step.

http://airflow.apache.org/cli.html#dag_state
https://cloud.google.com/composer/docs/how-to/accessing/airflow-cli
https://cloud.google.com/cloud-build/docs/running-builds/automate-builds


1/25/2020 Setting up a CI/CD pipeline for your data-processing workflow

https://cloud.google.com/solutions/cicd-pipeline-for-data-processing/ 12/15

2. In the Cloud Console, go to the Build triggers page.

Go to Build Triggers page (https://console.cloud.google.com/cloud-build/triggers)

3. Click Create trigger.

4. Click Cloud Source Repository, and then click Continue.

5. Click data-pipeline-source, and then click Continue.

6. To con�gure trigger settings, complete the following steps:

In the Name �eld, enter Trigger build in test environment.

For Trigger type, click Branch.

In the Branch (regex) �eld, enter master.

For Build con�guration, click Cloud Build con�guration �le (yaml or json).

In the Cloud Build con�guration �le location �eld, enter build-pipeline/build_deploy_test.yaml.

7. On the Trigger settings page, replace the variables with values from your environment that you got from the earlier step. Add the
following one at a time and click + Add item for each of the name-value pairs.

_DATAFLOW_JAR_BUCKET

_COMPOSER_INPUT_BUCKET

_COMPOSER_REF_BUCKET

_COMPOSER_DAG_BUCKET

_COMPOSER_ENV_NAME

_COMPOSER_REGION

_COMPOSER_DAG_NAME_TEST

https://console.cloud.google.com/cloud-build/triggers


1/25/2020 Setting up a CI/CD pipeline for your data-processing workflow

https://cloud.google.com/solutions/cicd-pipeline-for-data-processing/ 13/15

8. Click Create trigger.

To test the trigger, you add a new word to the test input �le and make the corresponding adjustment to the test reference �le. You verify that the
build pipeline is triggered by a commit push to Cloud Source Repositories and that the data-processing work�ow runs correctly with the
updated test �les.

1. In Cloud Shell, add a test word at the end of the test �le:

2. Update the test result reference �le, ref.txt, to match the changes done in the test input �le:

3. Commit and push changes to Cloud Source Repositories:

4. In the Cloud Console, go to the History page.

GO TO HISTORY PAGE (https://console.cloud.google.com/cloud-build)

5. To verify that a new build is triggered by the previous push to master branch, on the current running build, the Trigger column says Push
to master branch.

6. In Cloud Shell, get the URL for your Cloud Composer web interface:

7. After the build �nishes, go to the URL from the previous command to verify that the test_word_count DAG is running.

Wait until the DAG run �nishes, which is indicated when the light green circle in the DAG runs column goes away. It usually takes between
three to �ve minutes for the process to �nish.

8. In Cloud Shell, download the test result �les:

9. Verify that the newly added word is in one of the result �les:

The output is similar to the following:

https://console.cloud.google.com/cloud-build


1/25/2020 Setting up a CI/CD pipeline for your data-processing workflow

https://cloud.google.com/solutions/cicd-pipeline-for-data-processing/ 14/15



To avoid incurring charges to your Google Cloud Platform account for the resources used in this tutorial:

Caution: Deleting a project has the following effects:

Everything in the project is deleted. If you used an existing project for this tutorial, when you delete it, you also delete any other work you've done in

the project.

Custom project IDs are lost. When you created this project, you might have created a custom project ID that you want to use in the future. To preserve

the URLs that use the project ID, such as an appspot.com URL, delete selected resources inside the project instead of deleting the whole project.

1. In the Cloud Console, go to the Manage resources page.

Go to the Manage resources page (https://console.cloud.google.com/iam-admin/projects)

2. In the project list, select the project you want to delete and click Delete .

3. In the dialog, type the project ID, and then click Shut down to delete the project.

If you want to keep the project used for this tutorial, run the following steps to delete the resources you created in this tutorial.

1. To delete the Cloud Build trigger, complete the following steps:

a. In the Cloud Console, go to the Triggers page.

Go to Triggers page (https://console.cloud.google.com/cloud-build/triggers)

b. Next to the trigger that you created, click More, and then click Delete.

2. In Cloud Shell, delete the Cloud Composer environment:

3. Delete the Cloud Storage buckets and their �les:

4. Delete the repository:

https://console.cloud.google.com/iam-admin/projects
https://console.cloud.google.com/cloud-build/triggers


1/25/2020 Setting up a CI/CD pipeline for your data-processing workflow

https://cloud.google.com/solutions/cicd-pipeline-for-data-processing/ 15/15

5. Delete the �les and folder you created:

Learn more about GitOps-style continuous delivery with Cloud Build (/kubernetes-engine/docs/tutorials/gitops-cloud-build).

Learn more about Automating infrastructure with Cloud Composer (/solutions/automating-infrastructure-using-cloud-composer).

Learn more about Common Data�ow use-case patterns (/blog/products/gcp/guide-to-common-cloud-data�ow-use-case-patterns-part-1).

Learn more about Release Engineering  (https://landing.google.com/sre/sre-book/chapters/release-engineering/).

Try out other Google Cloud features for yourself. Have a look at our tutorials (/docs/tutorials).

https://cloud.google.com/kubernetes-engine/docs/tutorials/gitops-cloud-build
https://cloud.google.com/solutions/automating-infrastructure-using-cloud-composer
https://cloud.google.com/blog/products/gcp/guide-to-common-cloud-dataflow-use-case-patterns-part-1
https://landing.google.com/sre/sre-book/chapters/release-engineering/
https://cloud.google.com/docs/tutorials

