
1/25/2020 Creating a CI/CD pipeline with Azure Pipelines and Google Kubernetes Engine | Solutions | Google Cloud

https://cloud.google.com/solutions/creating-cicd-pipeline-vsts-kubernetes-engine 1/27

Solutions Solutions

In this tutorial, you learn how to use Azure Pipelines (https://www.visualstudio.com/team-services/)

(previously called Visual Studio Team Services), Google Kubernetes Engine
 (https://cloud.google.com/kubernetes-engine/) (GKE), and Container Registry
 (https://cloud.google.com/container-registry/) to create a continuous integration/continuous
deployment (CI/CD) pipeline. The tutorial uses the ASP.NET MusicStore
 (https://github.com/aspnet/MusicStore) web application, which is based on ASP.NET Core
 (https://docs.microsoft.com/en-us/aspnet/core/?view=aspnetcore-2.1).

The CI/CD pipeline uses two separate GKE clusters, one for testing and one for production. At
the beginning of the pipeline, developers commit changes to the example codebase. This
action triggers the pipeline to create a release and to deploy it to the development cluster. A
release manager can then promote the release so that it's deployed into the production cluster.
The following diagram illustrates this process.

 (https://cloud.google.com/solutions/)

Creating a CI/CD pipeline with Azure Pipelines
and Google Kubernetes Engine

https://cloud.google.com/solutions/
https://cloud.google.com/solutions/
https://www.visualstudio.com/team-services/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/container-registry/
https://github.com/aspnet/MusicStore
https://docs.microsoft.com/en-us/aspnet/core/?view=aspnetcore-2.1

1/25/2020 Creating a CI/CD pipeline with Azure Pipelines and Google Kubernetes Engine | Solutions | Google Cloud

https://cloud.google.com/solutions/creating-cicd-pipeline-vsts-kubernetes-engine 2/27

Microsoft

Azure DevOps
Services Development

Kubernetes Engine Cluster

Developers

End Users

Git

L7 Load
Balancer

musicstore

Container
Registry

Docker Images

Pod

musicstore

NodePort

musicstore

Hosted Agent
(Linux)

Production

Kubernetes Engine Cluster

L7 Load
Balancer

musicstore

Pod

musicstore

NodePort

musicstore

Develop

Test

Use

Pull

Pull

Push

Deploy

Deploy

The tutorial assumes that you have basic knowledge of .NET Core, Azure Pipelines, and GKE.
The tutorial also requires you to have administrative access to an Azure DevOps account.

Objectives

Connect Container Registry to Azure Pipelines for publishing Docker images.

1/25/2020 Creating a CI/CD pipeline with Azure Pipelines and Google Kubernetes Engine | Solutions | Google Cloud

https://cloud.google.com/solutions/creating-cicd-pipeline-vsts-kubernetes-engine 3/27

Prepare a .NET Core sample application (https://github.com/aspnet/MusicStore) for
deployment into GKE.

Authenticate securely against GKE without having to use legacy authentication.

Use Azure Pipelines release management to orchestrate GKE deployments.

Costs

This tutorial uses billable components of Google Cloud, including:

GKE (https://cloud.google.com/kubernetes-engine/pricing)

Cloud Load Balancing (https://cloud.google.com/compute/network-pricing#lb)

Cloud Storage (https://cloud.google.com/storage/pricing) (for Container Registry)

Use the Pricing Calculator (https://cloud.google.com/products/calculator/) to generate a cost
estimate based on your projected usage. Check the Azure DevOps pricing page
 (https://azure.microsoft.com/en-us/pricing/details/devops/azure-devops-services/) for any fees that
might apply for using Azure DevOps.

Before you begin

It's usually advisable to use separate projects for development and production workloads so
that identity and access management (IAM) roles and permissions can be granted individually.
For the sake of simplicity, this tutorial uses a single project for both GKE clusters, one for
development and one for production.

1. In the Cloud Console, on the project selector page, select or create a Cloud project.

Note: If you don't plan to keep the resources that you create in this procedure, create a project instead

of selecting an existing project. After you �nish these steps, you can delete the project, removing all

resources associated with the project.

GO TO THE PROJECT SELECTOR PAGE (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/PROJECTSELECT

https://github.com/aspnet/MusicStore
https://cloud.google.com/kubernetes-engine/pricing
https://cloud.google.com/compute/network-pricing#lb
https://cloud.google.com/storage/pricing
https://cloud.google.com/products/calculator/
https://azure.microsoft.com/en-us/pricing/details/devops/azure-devops-services/
https://console.cloud.google.com/projectselector2/home/dashboard

1/25/2020 Creating a CI/CD pipeline with Azure Pipelines and Google Kubernetes Engine | Solutions | Google Cloud

https://cloud.google.com/solutions/creating-cicd-pipeline-vsts-kubernetes-engine 4/27

2. Make sure that billing is enabled for your Google Cloud project. Learn how to con�rm
billing is enabled for your project (https://cloud.google.com/billing/docs/how-to/modify-project).

3. Make sure you have an Azure DevOps account and have administrator access to it. If you
don't yet have an Azure DevOps account, you can sign up on the Azure DevOps home
page (https://go.microsoft.com/fwlink/?LinkId=307137).

Note: You can either use a command-line Git client or Visual Studio to follow this tutorial. If you use Visual

Studio, make sure that it's connected to your Azure DevOps account.

Creating an Azure DevOps project

You use Azure DevOps to manage the source code, run builds and tests, and orchestrate the
deployment to GKE. To begin, you create a new project in your Azure DevOps account.

1. Go to the Azure DevOps home page
(https://dev.azure.com/[YOUR_AZURE_DEVOPS_ACCOUNT_NAME]).

2. Click Create Project.

3. Enter a project name, such as Music Store.

4. Set Visibility to Private, and then click Create project.

5. After the project has been created, in the menu on the left, click Repos.

6. Click Import to fork the Music Store repository from GitHub. Set the following values:

Source type: Git

Clone URL:

Leave the Requires authorization checkbox unselected.

https://github.com/aspnet/MusicStore.git  

https://cloud.google.com/billing/docs/how-to/modify-project
https://go.microsoft.com/fwlink/?LinkId=307137

1/25/2020 Creating a CI/CD pipeline with Azure Pipelines and Google Kubernetes Engine | Solutions | Google Cloud

https://cloud.google.com/solutions/creating-cicd-pipeline-vsts-kubernetes-engine 5/27

7. Click Import.

When the import process is done, you see the source code of the MusicStore application.

Building continuously

You can now use Azure Pipelines to set up continuous integration. For each commit that's
pushed to the Git repository, Azure Pipelines builds the code and packages the build artifacts
into a Docker container. The container is then published to Container Registry.

Creating a testing branch

This tutorial was built and tested with version 2.0.0 of the Music Store application. To make
sure that you are using the same version, create a new branch based on the rel/2.0.0 tag:

1. In the Azure DevOps menu, select Repos > Tags.

2. In the list of tags, expand rel and then right-click the icon next to 2.0.0.

3. Select New branch.

1/25/2020 Creating a CI/CD pipeline with Azure Pipelines and Google Kubernetes Engine | Solutions | Google Cloud

https://cloud.google.com/solutions/creating-cicd-pipeline-vsts-kubernetes-engine 6/27

4. Enter testing as the branch name and then click Create branch to con�rm your
selections.

By default, Azure Pipelines expects your code to reside in the master branch. In order to have it
use the testing branch, you need to change the default branch.

1. In the Azure DevOps menu, select Project settings.

2. Select Repos > Repositories.

3. In the list of repositories, select the Git repository you imported previously. It should have
the same name as your Azure DevOps project.

4. Expand the list of branches by clicking on the arrow next to Branches.

5. Select the testing branch.

A ... button appears next to the name of the branch.

6. Click ... and select Set as default branch.

Building the code

1/25/2020 Creating a CI/CD pipeline with Azure Pipelines and Google Kubernetes Engine | Solutions | Google Cloud

https://cloud.google.com/solutions/creating-cicd-pipeline-vsts-kubernetes-engine 7/27

After you create the branch, you can begin to automate the build. Because MusicStore is an
ASP.NET Core application, building includes four steps:

Downloading and installing dependencies.

Compiling the code.

Running unit tests.

Publishing the build results.

Later you'll add additional steps to deploy to GKE. Because GKE is a Linux-based environment,
you'll set up the entire build process to run on Linux-based build agents.

Creating a build pipeline

De�ne a new build pipeline by adding a YAML �le to the Git repository:

1. Clone your new Git repository
 (https://docs.microsoft.com/en-us/azure/devops/repos/git/clone?view=azure-devops&tabs=visual-
studio)

by using Visual Studio or a command-line Git client.

2. In the root of the Git workspace, create a new �le named azure-pipelines.yml.

3. Copy the following code and paste into the �le:

resources:
- repo: self
 fetchDepth: 1
queue:
 name: Hosted Ubuntu 1604
trigger:
- testing
variables:
 TargetFramework: 'netcoreapp2.0'
 RestoreBuildProjects: 'samples/**/*.csproj'
 TestProjects: 'test/MusicStore.Test/*.csproj'
 BuildConfiguration: 'Release'
 DockerImageName: '[PROJECT-ID]/musicstore'
steps:
- task: DotNetCoreCLI@2
 displayName: Restore
 inputs:
 command: restore



https://docs.microsoft.com/en-us/azure/devops/repos/git/clone?view=azure-devops&tabs=visual-studio

1/25/2020 Creating a CI/CD pipeline with Azure Pipelines and Google Kubernetes Engine | Solutions | Google Cloud

https://cloud.google.com/solutions/creating-cicd-pipeline-vsts-kubernetes-engine 8/27

4. In the variables section, replace [PROJECT_ID] with the name of your Google Cloud
project, then save the �le.

5. Commit your changes and push them to Azure Pipelines:

a. Open Team Explorer and click the Home icon at upper left to switch to the Home view.

b. Click Changes.

c. Enter a commit message like Add build definition.

d. Click Commit All and Push.

6. In the Azure DevOps menu, select Pipelines > Builds.

Observe that a build de�nition has been created based on the YAML �le that you have
committed to the Git repository.

Publishing Docker images

 projects: '$(RestoreBuildProjects)'
 feedsToUse: config
 nugetConfigPath: NuGet.config
- task: DotNetCoreCLI@2
 displayName: Build
 inputs:
 projects: '$(RestoreBuildProjects)'
 arguments: '--configuration $(BuildConfiguration) --framework=$(TargetFrame
- task: DotNetCoreCLI@2
 displayName: Test
 inputs:
 command: test
 projects: '$(TestProjects)'
 arguments: '--configuration $(BuildConfiguration) --framework=$(TargetFrame
- task: DotNetCoreCLI@2
 displayName: Publish
 inputs:
 command: publish
 publishWebProjects: True
 arguments: '--configuration $(BuildConfiguration) --framework=$(TargetFrame
 zipAfterPublish: false
 modifyOutputPath: false

VISUAL STUDIO COMMAND LINE

1/25/2020 Creating a CI/CD pipeline with Azure Pipelines and Google Kubernetes Engine | Solutions | Google Cloud

https://cloud.google.com/solutions/creating-cicd-pipeline-vsts-kubernetes-engine 9/27

To deploy the MusicStore application to GKE, the application must be packaged as a Docker
container and published to Container Registry. You will now extend the build de�nition to
automate these steps.

Setting up a service account for publishing images

Connecting to Container Registry requires that Azure Pipelines can authenticate with GCP. To do
this, create a service account in GCP that's dedicated to this purpose.

1. Switch to your project in the Cloud Console and open Cloud Shell.

OPEN CLOUD SHELL (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/?CLOUDSHELL=TRUE)

2. To save time typing your project ID and Compute Engine zone options, set default
con�guration values by running the following commands:

Replace [PROJECT_ID] with the ID of your GCP project and replace [ZONE] with the name
of the zone that you're going to use for creating resources. If you're unsure about which
zone to pick, use us-central1-a.

Example:

3. Enable the Container Registry API for your project:

4. Create a service account for Azure Pipelines to publish Docker images:

5. Assign the Storage Admin IAM role
 (https://cloud.google.com/storage/docs/access-control/iam-roles) to the service account:

gcloud config set project [PROJECT_ID]
gcloud config set compute/zone [ZONE]

 

gcloud config set project azure-pipelines-test-project-12345
gcloud config set compute/zone us-central1-a

 

gcloud services enable containerregistry.googleapis.com  

gcloud iam service-accounts create azure-pipelines-publisher --display-name "Az 

PROJECT_NUMBER=$(gcloud projects describe \
 $(gcloud config get-value core/project) \

 

https://console.cloud.google.com/?cloudshell=true
https://cloud.google.com/storage/docs/access-control/iam-roles

1/25/2020 Creating a CI/CD pipeline with Azure Pipelines and Google Kubernetes Engine | Solutions | Google Cloud

https://cloud.google.com/solutions/creating-cicd-pipeline-vsts-kubernetes-engine 10/27

6. Generate a service account key:

7. Launch Code Editor by clicking the button in the upper-right corner of Cloud Shell:

Screenshot of the 'Launch code editor' icon in the Cloud Shell menu bar

8. Open the �le named azure-pipelines-publisher-oneline.json. You'll need the content
of this �le in one of the following steps.

Connecting Azure Pipelines to Container Registry

With the service account created, you can now connect Azure Pipelines to Container Registry.

1. In the Azure DevOps menu, select Project settings and then select Pipelines > Service
connections.

2. Click Create service connection.

3. From the list, select Docker Registry and click Next.

4. In the dialog, enter values for the following �elds:

Registry type: Others

Docker Registry: https://gcr.io/[PROJECT-ID], where [PROJECT-ID] is the name of
your Google Cloud project.

Example: https://gcr.io/azure-pipelines-test-project-12345

Docker ID: _json_key

 --format='value(projectNumber)')

AZURE_PIPELINES_PUBLISHER=$(gcloud iam service-accounts list \
 --filter="displayName:Azure Pipelines Publisher" \
 --format='value(email)')

gcloud projects add-iam-policy-binding \
 $(gcloud config get-value core/project) \
 --member serviceAccount:$AZURE_PIPELINES_PUBLISHER \
 --role roles/storage.admin

gcloud iam service-accounts keys create \
 azure-pipelines-publisher.json --iam-account $AZURE_PIPELINES_PUBLISHER

tr -d '\n' < azure-pipelines-publisher.json > azure-pipelines-publisher-oneline

 

1/25/2020 Creating a CI/CD pipeline with Azure Pipelines and Google Kubernetes Engine | Solutions | Google Cloud

https://cloud.google.com/solutions/creating-cicd-pipeline-vsts-kubernetes-engine 11/27

Docker Password: Paste the content of azure-pipelines-publisher-oneline.json

Service connection name: gcr-tutorial

5. Click Save to create the connection.

Creating a Docker�le

1. In the root of your Git workspace, create a new �le named Dockerfile.

2. Copy the following code and paste into the �le, and then save the �le:

3. Create a another �le named deployment.yaml in the root of your Git workspace. Leave the
�le empty for now.

4. Commit your changes:

a. Open Team Explorer and click the Home icon at upper left to switch to the Home view.

b. Click Changes.

c. Enter a commit message like Add Dockerfile and placeholder for the Kubernetes
manifest.

d. Click Commit All.

Extending the build de�nition to build a Docker image

With all of the necessary �les checked in, you can now extend the build de�nition.

1. Open the �le azure-pipelines.yml.

2. Extend the build de�nition by appending the following piece of code to the �le:

FROM microsoft/aspnetcore:2.0.0
WORKDIR /app
COPY samples/MusicStore/bin/Release/netcoreapp2.0/publish /app/
ENTRYPOINT ["dotnet", "MusicStore.dll"]

 

VISUAL STUDIO COMMAND LINE

- task: CmdLine@1
 displayName: 'Lock image version in deployment.yaml'
 inputs:



1/25/2020 Creating a CI/CD pipeline with Azure Pipelines and Google Kubernetes Engine | Solutions | Google Cloud

https://cloud.google.com/solutions/creating-cicd-pipeline-vsts-kubernetes-engine 12/27

3. Commit your changes and push them to Azure Pipelines:

a. Open Team Explorer and click the Home icon at upper left to switch to the Home view.

b. Click Changes.

c. Enter a commit message like Extend build definition to build Docker image.

d. Click Commit All and Push.

4. In the Azure DevOps menu, select Pipelines > Builds.

Observe that a new build has automatically been triggered. It might take around 2
minutes for the build to complete.

If the build fails with the error message Step input dockerRegistryConnection
references service connection gcr-tutorial which could not be found, you might
need to re-save your pipeline
 (https://docs.microsoft.com/en-us/azure/devops/pipelines/process/resources?
view=vsts#troubleshooting-authorization-for-a-yaml-pipeline)

.

 filename: /bin/bash
 arguments: '-c "awk ''{gsub(\"MUSICSTORE_IMAGE\", \"gcr.io/$(DockerImageNam
- task: PublishBuildArtifacts@1
 displayName: 'Publish Artifact'
 inputs:
 PathtoPublish: '$(build.artifactstagingdirectory)'
- task: Docker@0
 displayName: 'Build image'
 inputs:
 containerregistrytype: 'Container Registry'
 dockerRegistryConnection: 'gcr-tutorial'
 imageName: '$(DockerImageName):$(Build.BuildId)'
- task: Docker@0
 displayName: 'Publish image'
 inputs:
 containerregistrytype: 'Container Registry'
 dockerRegistryConnection: 'gcr-tutorial'
 action: 'Push an image'
 imageName: '$(DockerImageName):$(Build.BuildId)'

VISUAL STUDIO COMMAND LINE

https://docs.microsoft.com/en-us/azure/devops/pipelines/process/resources?view=vsts#troubleshooting-authorization-for-a-yaml-pipeline

1/25/2020 Creating a CI/CD pipeline with Azure Pipelines and Google Kubernetes Engine | Solutions | Google Cloud

https://cloud.google.com/solutions/creating-cicd-pipeline-vsts-kubernetes-engine 13/27

5. To verify that the image has been published to Container Registry, switch to the Cloud
Console, select Container Registry > Images, and then click musicstore.

Observe that there is a single image, and that the tag of this image corresponds to the
numeric ID of the build that was run in Azure Pipelines.

Deploying continuously

With Azure Pipelines automatically building your code and publishing Docker images for each
commit, you can now turn your attention to deployment.

Unlike some other continuous integration systems, Azure Pipelines makes a distinction between
building and deploying, and it provides a specialized set of tools labeled Release Management
for all of the deployment-related tasks.

Azure Pipelines Release Management is built around these concepts:

A release refers to a set of artifacts that make up a speci�c version of your application
and that are usually the result of a build process.

Deployment refers to the process of taking a release and deploying it into a speci�c
environment.

A deployment performs a set of tasks, which can be grouped in jobs.

Stages allow you to segment your pipeline and can be used to orchestrate deployments to
multiple environments, for example development and testing environments.

The primary artifact that the MusicStore build process produces is the Docker image. However,
because the Docker image is published to Container Registry, the image is outside the scope of
Azure Pipelines. The image therefore doesn't serve well as the de�nition of a release.

To deploy to Kubernetes, you also need a manifest, which resembles a bill of materials. The
manifest not only de�nes the resources that Kubernetes is supposed to create and manage, but
also speci�es the exact version of the Docker image to use. The Kubernetes manifest is well
suited to serve as the artifact that de�nes the release in Azure Pipelines Release Management.

1/25/2020 Creating a CI/CD pipeline with Azure Pipelines and Google Kubernetes Engine | Solutions | Google Cloud

https://cloud.google.com/solutions/creating-cicd-pipeline-vsts-kubernetes-engine 14/27

Con�guring the Kubernetes deployment

To run the MusicStore in Kubernetes, you need the following resources:

A Deployment that de�nes a single pod that runs the Docker image produced by the build.

A NodePort service that makes the pod accessible to a load balancer.

An Ingress that exposes the application to the public internet by using a Cloud HTTP(S)
load balancer (https://cloud.google.com/compute/docs/load-balancing/http/).

With the MusicStore application, you can use either SQL Server or an embedded, locally stored
database. For the sake of simplicity, use the default con�guration that relies on the embedded
database, although it comes with two restrictions:

Only a single copy of the pod can run at a time. Otherwise users might see different data
depending on which pod serves them.

Any data changes are lost whenever the pod is restarted, unless you change the
deployment to use persistent volumes
 (https://cloud.google.com/kubernetes-engine/docs/how-to/stateful-apps). (We do not cover this
scenario in the tutorial.)

To de�ne these Kubernetes resources, you perform the following steps:

1. Open deployment.yaml and paste in the following code, and then save the �le:

apiVersion: v1
kind: Service
metadata:
 name: musicstore
spec:
 ports:
 - port: 80
 targetPort: 80
 protocol: TCP
 name: http
 selector:
 app: musicstore
 type: NodePort

apiVersion: extensions/v1beta1
kind: Ingress



https://cloud.google.com/compute/docs/load-balancing/http/
https://cloud.google.com/kubernetes-engine/docs/how-to/stateful-apps

1/25/2020 Creating a CI/CD pipeline with Azure Pipelines and Google Kubernetes Engine | Solutions | Google Cloud

https://cloud.google.com/solutions/creating-cicd-pipeline-vsts-kubernetes-engine 15/27

2. Commit your changes and push them to Azure Pipelines:

metadata:
 name: musicstore
spec:
 backend:
 serviceName: musicstore
 servicePort: 80

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 name: musicstore
spec:
 replicas: 1
 template:
 metadata:
 labels:
 app: musicstore
 spec:
 containers:
 - name: musicstore
 image: MUSICSTORE_IMAGE
 ports:
 - containerPort: 80
 livenessProbe: # Used by deployment controller
 httpGet:
 path: /
 port: 80
 initialDelaySeconds: 5
 periodSeconds: 5
 readinessProbe: # Used by Ingress/GCLB
 httpGet:
 path: /
 port: 80
 initialDelaySeconds: 3
 periodSeconds: 5
 resources:
 limits:
 memory: 1024Mi
 requests:
 memory: 768Mi

1/25/2020 Creating a CI/CD pipeline with Azure Pipelines and Google Kubernetes Engine | Solutions | Google Cloud

https://cloud.google.com/solutions/creating-cicd-pipeline-vsts-kubernetes-engine 16/27

a. Open Team Explorer and click the Home icon at upper left to switch to the Home view.

b. Click Changes.

c. Enter a commit message like Add Kubernetes manifest.

d. Click Commit All and Push.

Se�ing up the development and production environments

Before returning to Azure Pipelines Release Management, you need to create the GKE clusters.

Creating GKE clusters

1. In GCP, open a Cloud Shell instance.

2. To save time typing your project ID and Compute Engine zone options, set the default
con�guration values by running the following commands:

Example:

3. Enable the GKE API for your project:

4. Create the development cluster by using the following command. Note that it might take a
few minutes to complete:

5. Create the production cluster by using the following command. Note that it might take a
few minutes to complete:

VISUAL STUDIO COMMAND LINE

gcloud config set project [PROJECT_ID]
gcloud config set compute/zone [ZONE]

 

gcloud config set project azure-pipelines-test-project-12345
gcloud config set compute/zone us-central1-a

 

gcloud services enable container.googleapis.com  

gcloud container clusters create azure-pipelines-cicd-dev  

1/25/2020 Creating a CI/CD pipeline with Azure Pipelines and Google Kubernetes Engine | Solutions | Google Cloud

https://cloud.google.com/solutions/creating-cicd-pipeline-vsts-kubernetes-engine 17/27

Connecting Azure Pipelines to the development cluster

Just as you can use Azure Pipelines to connect to an external Docker registry like Container
Registry, Azure Pipelines supports integrating external Kubernetes clusters.

It is possible to authenticate to Container Registry using a Google Cloud service account, but
using Google Cloud service accounts is not supported by Azure Pipelines for authenticating
with GKE. Instead, you have to use a Kubernetes service account
 (https://kubernetes.io/docs/reference/access-authn-authz/authentication/#service-account-tokens).

To connect Azure Pipelines to your development cluster, you therefore have to create a
Kubernetes service account �rst.

1. In Cloud Shell, connect to the development cluster:

2. Create a Kubernetes service account for Azure Pipelines:

3. Assign the cluster-admin role to the service account by creating a cluster role binding:

4. Determine the IP address of the cluster:

You will need this address in a moment.

5. In the Azure DevOps menu, select Project settings and then select Pipelines > Service
connections.

6. Click New service connection.

7. Select Kubernetes and click Next.

8. Con�gure the following settings.

gcloud container clusters create azure-pipelines-cicd-prod  

gcloud container clusters get-credentials azure-pipelines-cicd-dev  

kubectl create serviceaccount azure-pipelines-deploy  

kubectl create clusterrolebinding azure-pipelines-deploy --clusterrole=cluster- 

gcloud container clusters describe azure-pipelines-cicd-dev --format=value\(end 

https://kubernetes.io/docs/reference/access-authn-authz/authentication/#service-account-tokens

1/25/2020 Creating a CI/CD pipeline with Azure Pipelines and Google Kubernetes Engine | Solutions | Google Cloud

https://cloud.google.com/solutions/creating-cicd-pipeline-vsts-kubernetes-engine 18/27

Note: To get some of these values, you must run kubectl commands in Cloud Shell and then copy the

values into the Azure page.

Authentication method: Service account.

Server URL: https://[MASTER-IP]/. Replace [MASTER-IP] with the IP address that
you determined earlier.

Secret: Run the following command in Cloud Shell and copy the output:

Service connection name: azure-pipelines-cicd-dev.

9. Click Save.

Connecting Azure Pipelines to the production cluster

To connect Azure Pipelines to your production cluster, you can follow the same approach.

1. In Cloud Shell, connect to the production cluster:

2. Create a Kubernetes service account for Azure Pipelines:

3. Assign the cluster-admin role to the service account by creating a cluster role binding:

4. Determine the IP address of the cluster:

You will need this address in a moment.

5. In the Azure DevOps menu, select Project settings and then select Pipelines > Service
connections.

kubectl get secret $(kubectl get serviceaccounts azure-pipelines-deploy -o  

gcloud container clusters get-credentials azure-pipelines-cicd-prod  

kubectl create serviceaccount azure-pipelines-deploy  

kubectl create clusterrolebinding azure-pipelines-deploy --clusterrole=cluster- 

gcloud container clusters describe azure-pipelines-cicd-prod --format=value\(en 

1/25/2020 Creating a CI/CD pipeline with Azure Pipelines and Google Kubernetes Engine | Solutions | Google Cloud

https://cloud.google.com/solutions/creating-cicd-pipeline-vsts-kubernetes-engine 19/27

6. Click New service connection.

7. Select Kubernetes and click Next.

8. Con�gure the following settings:

Note: To get some of these values, you must run kubectl commands in Cloud Shell and then copy the

values into the Azure page.

Authentication method: Service account.

Server URL: https://[MASTER-IP]/. Replace [MASTER-IP] with the IP address that
you determined earlier.

Secret: Run the following command in Cloud Shell and copy the output:

Service connection name: azure-pipelines-cicd-prod.

9. Click Save.

Con�guring the release pipeline

After you set up the GKE infrastructure, you return to Azure Pipelines to automate the
deployment, which includes the following:

Deploying to the development environment.

Requesting manual approval before initiating a deployment to the production
environment.

Deploying to the production environment.

Creating a release de�nition

As a �rst step, create a new release de�nition.

1. In the Azure DevOps menu, select Pipelines > Releases.

2. Click New pipeline.

3. From the list of templates, select Empty job.

kubectl get secret $(kubectl get serviceaccounts azure-pipelines-deploy -o  

1/25/2020 Creating a CI/CD pipeline with Azure Pipelines and Google Kubernetes Engine | Solutions | Google Cloud

https://cloud.google.com/solutions/creating-cicd-pipeline-vsts-kubernetes-engine 20/27

4. When you're prompted for a name for the stage, enter Dev.

5. At the top of the screen, name the release MusicStore-KubernetesEngine.

6. In the pipeline diagram, next to Artifacts, click Add.

7. Select Build and add the following settings:

Source (build pipeline): Select the build de�nition (there should be only one option)

Default version: Latest

Source Alias: manifest

8. Click Add.

9. On the Artifact box, click the lightning bolt icon to add a deployment trigger.

10. Under Continuous deployment trigger, set the switch to Enabled.

11. Click Save.

12. Enter a comment if you want, and then con�rm by clicking Save.

The pipeline now looks like this:

1/25/2020 Creating a CI/CD pipeline with Azure Pipelines and Google Kubernetes Engine | Solutions | Google Cloud

https://cloud.google.com/solutions/creating-cicd-pipeline-vsts-kubernetes-engine 21/27

Deploying to the development cluster

With the release de�nition created, you can now con�gure the deployment to the GKE
development cluster.

1. In the pipeline menu, switch to the Tasks tab.

2. Click Agent job.

3. Set Agent speci�cation to ubuntu-16.04.

4. Next to Agent job, click the + icon to add a step to the phase.

5. Select the Deploy to Kubernetes task and click Add.

6. Click the newly added task and con�gure the following settings:

Display name: Deploy

Action: deploy

Kubernetes service connection: azure-pipelines-cicd-dev

Namespace: default

Strategy: None

Manifests: manifest/drop/deployment.yaml

7. Click Save.

8. Enter a comment if you want, and then con�rm by clicking OK.

Deploying to the production cluster

Finally, you con�gure the deployment to the GKE production cluster.

1. In the menu, switch to the Pipeline tab.

2. In the Stages box, select Add > New stage.

3. From the list of templates, select Empty job.

4. When you're prompted for a name for the stage, enter Prod.

5. Click the lightning bolt icon of the newly created stage.

6. Con�gure the following settings:

Select trigger: After stage

Stages: Dev

1/25/2020 Creating a CI/CD pipeline with Azure Pipelines and Google Kubernetes Engine | Solutions | Google Cloud

https://cloud.google.com/solutions/creating-cicd-pipeline-vsts-kubernetes-engine 22/27

Pre-deployment approvals: (enabled)

Approvers: Select your own user name.

The pipeline now looks like this:

7. Switch to the Tasks tab.

8. Hold the mouse over the Tasks tab and select Tasks > Prod.

9. Click Agent job.

10. Set Agent speci�cation to ubuntu-16.04.

11. Click the + icon to add a step to the phase.

12. Select the Deploy to Kubernetes task and click Add.

13. Click the newly added task and con�gure the following settings:

Display name: Deploy

Action: deploy

Kubernetes service connection: azure-pipelines-cicd-prod

Namespace: default

Strategy: None

Manifests: manifest/drop/deployment.yaml

14. Click Save.

15. Enter a comment if you want, and then con�rm by clicking OK.

1/25/2020 Creating a CI/CD pipeline with Azure Pipelines and Google Kubernetes Engine | Solutions | Google Cloud

https://cloud.google.com/solutions/creating-cicd-pipeline-vsts-kubernetes-engine 23/27

Running the pipeline

Now that you've con�gured the entire pipeline, it's time to test it by performing a source code
change.

1. In your Git workspace, open the �le samples\MusicStore\config.json.

2. In line 3, change the SiteTitle setting to ASP.NET MVC Music Store running on Google
Kubernetes Engine.

3. Commit your changes and push them to Azure Pipelines:

a. Open Team Explorer and click the Home icon at upper left to switch to the Home view.

b. Click Changes.

c. Enter a commit message like Change site title.

d. Click Commit All and Push.

4. In the Azure DevOps menu, select Pipelines > Builds and observe that a build has been
triggered automatically:

It might take around 2 minutes before the status switches to Succeeded.

5. When the build is �nished, select Pipelines > Releases and observe that a release process
has been initiated:

VISUAL STUDIO COMMAND LINE

1/25/2020 Creating a CI/CD pipeline with Azure Pipelines and Google Kubernetes Engine | Solutions | Google Cloud

https://cloud.google.com/solutions/creating-cicd-pipeline-vsts-kubernetes-engine 24/27

6. Click Release-1 to open the details page, and wait for the status of the Dev stage to
switch to Succeeded. You might need to refresh the status by clicking the Refresh button
in the menu or by reloading the browser page.

7. In the Cloud Console, select Kubernetes Engine > Services & Ingress.

8. Locate the Ingress service for the azure-pipelines-cicd-dev cluster, and wait for its status
to switch to Ok. This might take several minutes.

9. Open the link in the Endpoints column of the same row. You might see an error at �rst
because the load balancer takes a few minutes to become available. When it's ready,
observe that the Music Store has been deployed and is using the custom title:

1/25/2020 Creating a CI/CD pipeline with Azure Pipelines and Google Kubernetes Engine | Solutions | Google Cloud

https://cloud.google.com/solutions/creating-cicd-pipeline-vsts-kubernetes-engine 25/27

10. In Azure Pipelines, click the Approve button located under the Prod stage to promote the
deployment to the production environment:

If you don't see the button, you might need to �rst approve or reject a previous release.

11. Enter a comment if you want, and then con�rm by clicking Approve.

12. Wait for the status of the Prod environment to switch to Succeeded. You might need to
manually refresh the page in your browser.

13. In the Cloud Console, refresh the Services page.

14. Locate the Ingress service for the azure-pipelines-cicd-prod cluster and wait for its status
to switch to Ok. This might take several minutes.

15. Open the link in the Endpoints column of the same row. Again, you might see an error at
�rst because the load balancer take a few minutes to become available. When it's ready,
you see the MusicStore app with the custom title again, this time running in the
production cluster.

Cleaning up

To avoid incurring further costs after you have completed this tutorial, delete the entities that
you've created.

Delete the Azure Pipelines project

1/25/2020 Creating a CI/CD pipeline with Azure Pipelines and Google Kubernetes Engine | Solutions | Google Cloud

https://cloud.google.com/solutions/creating-cicd-pipeline-vsts-kubernetes-engine 26/27

Delete the project (https://docs.microsoft.com/en-us/vsts/accounts/delete-team-project?view=vsts) in
Azure Pipelines. Note that this also causes all source code changes to be lost.

Delete the GCP project

Caution: Deleting a project has the following effects:

Everything in the project is deleted. If you used an existing project for this tutorial, when you

delete it, you also delete any other work you've done in the project.

Custom project IDs are lost. When you created this project, you might have created a custom

project ID that you want to use in the future. To preserve the URLs that use the project ID, such

as an appspot.com URL, delete selected resources inside the project instead of deleting the

whole project.

1. In the Cloud Console, go to the Manage resources page.

GO TO THE MANAGE RESOURCES PAGE (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/IAM-ADMIN/PRO

2. In the project list, select the project you want to delete and click Delete .

3. In the dialog, type the project ID, and then click Shut down to delete the project.

What's next

Con�gure �ne-grained access control for Container Registry
 (https://cloud.google.com/container-registry/docs/access-control).

Learn how to deploy a highly available SQL Server group on Compute Engine
 (https://cloud.google.com/solutions/deploy-multi-subnet-sql-server).

Read about .NET on Google Cloud Platform (https://cloud.google.com/dotnet/docs/).

Install Cloud Tools for Visual Studio (https://cloud.google.com/visual-studio/).

Try out other Google Cloud Platform features for yourself. Have a look at our tutorials
 (https://cloud.google.com/docs/tutorials).

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License
 (https://creativecommons.org/licenses/by/4.0/), and code samples are licensed under the Apache 2.0 License

https://docs.microsoft.com/en-us/vsts/accounts/delete-team-project?view=vsts
https://console.cloud.google.com/iam-admin/projects
https://cloud.google.com/container-registry/docs/access-control
https://cloud.google.com/solutions/deploy-multi-subnet-sql-server
https://cloud.google.com/dotnet/docs/
https://cloud.google.com/visual-studio/
https://cloud.google.com/docs/tutorials
https://creativecommons.org/licenses/by/4.0/
https://www.apache.org/licenses/LICENSE-2.0

1/25/2020 Creating a CI/CD pipeline with Azure Pipelines and Google Kubernetes Engine | Solutions | Google Cloud

https://cloud.google.com/solutions/creating-cicd-pipeline-vsts-kubernetes-engine 27/27

 (https://www.apache.org/licenses/LICENSE-2.0). For details, see our Site Policies
 (https://developers.google.com/terms/site-policies). Java is a registered trademark of Oracle and/or its a�liates.

Last updated November 26, 2019.

https://www.apache.org/licenses/LICENSE-2.0
https://developers.google.com/terms/site-policies

