
1/23/2020 Deploying .NET apps on Google Cloud | Solutions | Google Cloud

https://cloud.google.com/solutions/deploy-dotnet-applications 1/25

Solutions Solutions

This article provides an overview of how you can deploy .NET apps on Google Cloud and
provides guidance on how to choose the right deployment approach for your app.

Introduction

The Microsoft .NET framework provides a rich set of tools and libraries for app development.
With the advent of Docker support on Windows and the ability to run .NET Core apps on Linux
 (https://docs.microsoft.com/en-us/dotnet/core/linux-prerequisites?), .NET apps are now also able to
support a variety of deployment targets.

For development and testing to be e�cient, you can automate app deployment and make it part
of a continuous integration/continuous delivery (CI/CD) pipeline. But in order to choose the
right tooling and to build a CI/CD pipeline, you must �rst identify how to run the app in
production and which approach to deployment you want to take.

There is no single best way to deploy a .NET app on Google Cloud. The best deployment
options for you depend on the app and your requirements. For example, if your app requires the
full .NET Framework or must run on IIS, your deployment will be based on Windows. On the
other hand, if your app can run with the functionality supported by .NET Core, you have the
option of deploying under Linux.

This article looks at the various ways you can run .NET apps and deploy them on Google Cloud,
including the conditions for when each option is suitable. At the end, your deployment options
are summarized in a decision tree to help you decide which Google Cloud components and
approaches are best for your .NET app.

 (https://cloud.google.com/solutions/)

Deploying .NET apps on Google Cloud

https://cloud.google.com/solutions/
https://cloud.google.com/solutions/
https://docs.microsoft.com/en-us/dotnet/core/linux-prerequisites?

1/23/2020 Deploying .NET apps on Google Cloud | Solutions | Google Cloud

https://cloud.google.com/solutions/deploy-dotnet-applications 2/25

Deployment models

There are two basic ways to conduct automated deployment of an app. The deployment
package is either pushed to the app servers, or the app servers pull the app package from a
known location. The following sections discuss differences between these two models.

Push-based deployments

In a push-based deployment, the deployment artifact—a zip �le, a NuGet package, or another
artifact—is initially available only to a deployment server. The deployment server can be a
dedicated machine or a role that the CI system assumes.

To perform a deployment, a process on the deployment server connects to an app server, copies
the deployment artifact, and initiates its installation. If there is more than one app server, this
process is repeated in parallel or, more commonly, in sequence so that artifacts are deployed to
all app servers.

The following diagram illustrates this �ow.

Artifact

Copy and deploy

Deployment
Server App Server

A variety of con�guration management tools are available that let you automate deployments
this way. Some of these tools follow an imperative approach where the sequence of
deployment steps is de�ned in a script-like manner. Although this approach is intuitive, it's
prone to con�guration drift—that is, after a certain amount of time, the states of multiple
machines might not be identical and might not fully re�ect your intended state. Many tools
therefore let you de�ne the state you want, leaving it to the tool to �gure out the steps required
to realize this state.

On Windows, commonly used tools for this model of deployment include:

Microsoft Web Deploy (https://www.iis.net/downloads/microsoft/web-deploy), a free tool
designed to remotely deploy web apps to IIS servers.

https://www.iis.net/downloads/microsoft/web-deploy

1/23/2020 Deploying .NET apps on Google Cloud | Solutions | Google Cloud

https://cloud.google.com/solutions/deploy-dotnet-applications 3/25

Octopus Deploy (https://octopus.com/), commercial software that allows deployments to be
orchestrated in a �exible manner across �eets of machines.

Microsoft Team Foundation Server/Azure Pipelines Agents
 (https://docs.microsoft.com/en-us/vsts/build-release/concepts/agents/agents?view=vsts), which
directly integrate with the release management functionality of TFS/Azure Pipelines.

Windows PowerShell Desired State Con�guration (DSC)
 (https://docs.microsoft.com/en-us/powershell/scripting/dsc/overview/overview?view=powershell-6),
a built-in feature of Windows Server 2012 R2 and later versions.

Popular open source tools include Ansible (https://www.ansible.com/), Chef
 (https://www.chef.io/chef/), and Puppet (https://puppet.com/). Although these tools primarily target
Linux, they are also capable of deploying Windows targets.

Security

For the deployment server to push a deployment to an app server, a back channel must be
available. For example, Web Deploy and Octopus Deploy use a custom protocol and port for
this task, while Ansible uses SSH.

Regardless of the protocol that the tool uses, it's critical that the communication is secure to
help prevent attackers from using the back channel to deploy malicious apps. Most importantly,
secure communication requires the deployment server to be able to authenticate with the app
server.

SSH can use public key authentication. If you use appropriate Cloud IAM con�guration
 (https://cloud.google.com/compute/docs/access/iam#the_serviceaccountuser_role), you can let Google
Cloud automatically take care of distributing the public key used for SSH to the app servers.
However, if you're not using Cloud IAM, Google Cloud can't manage the key for you, and you
must manage this task yourself.

One option is Active Directory. When both the deployment server and the app server run
Windows and are members of an Active Directory domain, authentication is handled using
Kerberos (https://msdn.microsoft.com/en-us/library/aa378747(v=vs.85).aspx). However, running a
fault-tolerant Active Directory environment
 (https://cloud.google.com/solutions/deploy-fault-tolerant-active-directory-environment), requires at least
two additional VM instances in order to run domain controllers. If your con�guration uses
autoscaling, all the servers also need to be dynamically joined to the domain, which slows
down the process of bringing up a server. Autoscaling can also lead to stale computer objects

https://octopus.com/
https://docs.microsoft.com/en-us/vsts/build-release/concepts/agents/agents?view=vsts
https://docs.microsoft.com/en-us/powershell/scripting/dsc/overview/overview?view=powershell-6
https://www.ansible.com/
https://www.chef.io/chef/
https://puppet.com/
https://cloud.google.com/compute/docs/access/iam#the_serviceaccountuser_role
https://msdn.microsoft.com/en-us/library/aa378747(v=vs.85).aspx
https://cloud.google.com/solutions/deploy-fault-tolerant-active-directory-environment

1/23/2020 Deploying .NET apps on Google Cloud | Solutions | Google Cloud

https://cloud.google.com/solutions/deploy-dotnet-applications 4/25

accumulating in the directory, calling for additional scavenging logic. If you do use Active
Directory in cloud-based environment, you must take these extra factors into account.

In the absence of Active Directory, authentication either needs to be handled using NTLM
 (https://msdn.microsoft.com/en-us/library/aa378749.aspx) or through other means, such as HTTP
Basic authentication. Both approaches require credentials to be kept in sync between the
deployment server and app servers and to be securely stored. Both of these tasks can prove
challenging.

Whether you are using Linux or Windows, securing the communication between deployment
and app servers requires mechanisms that are separate from Cloud IAM. However, using
multiple mechanisms to control access to systems increases overall complexity and thereby
increases the likeliness of accidental miscon�guration.

Operating system updates

It's important to be able to e�ciently deploy new versions of app packages on app servers, but
it's also critical to service the underlying operating system on those servers. This means
installing security patches. For larger server �eets, you should automate this process in a way
that minimizes risk and minimizes the number of servers that are unavailable while being
updated.

You can also use a push approach to operating system updates, where the deployment server
triggers an OS update on the app servers. On Linux, it's common to use SSH to remotely run
update commands for this. On Windows, PowerShell remoting
 (https://docs.microsoft.com/en-us/powershell/scripting/learn/remoting/running-remote-commands?
view=powershell-6)

(which relies on WinRM) is a common choice. For both mechanisms, you must be able to
securely authenticate and to securely store credentials.

Autoscaling

In a static environment where the number of app servers doesn't change, the deployment server
knows all deployment targets in advance. In a cloud environment, it's often bene�cial to
autoscale the number of app servers up and down. This creates two challenges when you're
using push-based deployments:

When a new app server is added, register it with the deployment server to make sure that
the new server is included in future deployments.

https://msdn.microsoft.com/en-us/library/aa378749.aspx
https://docs.microsoft.com/en-us/powershell/scripting/learn/remoting/running-remote-commands?view=powershell-6

1/23/2020 Deploying .NET apps on Google Cloud | Solutions | Google Cloud

https://cloud.google.com/solutions/deploy-dotnet-applications 5/25

The new server needs to receive its initial deployment.

An autoscaling event isn't initiated by the deployment server. Instead, it's initiated by the
underlying managed instance group (https://cloud.google.com/compute/docs/instance-groups/),
which functions at a level below that of the deployment server.

The new app server instance must register itself with the deployment server and trigger a
deployment before the new app server can serve requests. The following diagram illustrates
this process.

Application

Register

Copy and deploy Spawn new
server

Deployment
Server App Server

App Server

For this approach to work, it's not su�cient that the deployment server can contact and
authenticate with app servers. The app servers also need to contact the deployment server and
authenticate with it.

Finally, the newly launched server must also have the latest OS security patches. Initiating an
update during the autoscaling process would delay the process signi�cantly. Therefore, the
image from which the app server VM is created needs to have the updates installed already.
You can manage this in two ways:

Use the OS images provided by Google Cloud, which are kept up to date by Google.
Because these images contain only the OS, you must handle any customizations (your
app code, utilities, and OS con�gurations) using startup scripts
 (https://cloud.google.com/compute/docs/startupscript) or as part of the app deployment.

Maintain a custom OS image and keep it up to date. This allows you to apply
customizations to the image, but it increases the overall complexity of managing your
deployments.

https://cloud.google.com/compute/docs/instance-groups/
https://cloud.google.com/compute/docs/startupscript

1/23/2020 Deploying .NET apps on Google Cloud | Solutions | Google Cloud

https://cloud.google.com/solutions/deploy-dotnet-applications 6/25

Performing push-based deployments is intuitive, but it can result in substantial complexity
when you take into account security, OS updates, and autoscaling. The next section addresses
pull-based deployments, which are the more cloud-native way to approach deployments.

Pull-based deployments

In pull-based deployments, deployments are performed in an indirect manner. After the CI
system has produced a new version of a deployment artifact, it publishes the artifact to a
repository. The following diagram illustrates this �ow.

Application

Trigger

Publish

Deployment
Server App Server

Repository

Application

Pull
CI System

When a deployment is performed—which might be immediately after publishing the artifact or
at a later stage—the deployment server triggers the actual deployment. Again, the deployment
server might be a separate system or a role that the CI system assumes. Triggering the
deployment involves connecting to the app server to have it pull and install the deployment
artifact from the central repository.

Although the differences between a push-based model and a pull-based model might initially
seem minor, performing a pull-based deployment has a few important implications:

Triggering an app server to pull a deployment artifact doesn't have to happen at the app
or OS level. Instead, the deployment server can trigger the pull operation by having
Compute Engine restart or replace the VM. This can avoid the security challenges
associated with push-based deployments.

Rather than merely containing app �les, the deployment artifact can be a Docker image or
a VM image, which can unify the process of applying app and OS updates.

1/23/2020 Deploying .NET apps on Google Cloud | Solutions | Google Cloud

https://cloud.google.com/solutions/deploy-dotnet-applications 7/25

Security

The deployment server doesn't need to interact with the app server at all for certain kinds of
deployments. For example, no interaction is necessary if the deployment artifact is any of the
following:

A VM image.

A Docker image to be deployed to Google Kubernetes Engine.

A package to be deployed to App Engine.

Instead, the deployment server just needs to interact with the Google Cloud APIs to initiate the
deployment. This in turn means that the deployment process can rely on authentication
mechanisms provided by Cloud IAM (https://cloud.google.com/docs/authentication/production),
which removes the need to manage keys or credentials.

When you use deployment artifacts such as zip or NuGet packages, which contain only the app
�les and binaries, you can trigger a deployment in these ways:

If the server is con�gured to pull and install the latest deployment artifact when the
operating system starts, you can trigger an update by having Google Cloud restart the VM.
Although a restart might seem unnecessarily time consuming, this avoids the need to
have the deployment server authenticate with the app server.

As with push-based deployments, the deployment server can remotely trigger the update
via a back channel. However, this approach is subject to the same security implications
and challenges of managing credentials that apply to push-based deployments.

The deployment server can run an agent that observes the repository for new deployment
artifacts. When a new artifact is detected, the server can apply it automatically. A
potential issue is that multiple app servers could end up installing updates concurrently
and thus be unavailable. To avoid this, the agent can track server state in the repository
and use this server state information to roll out updates in a controlled manner.

In each of these cases, make sure that you control write access to the repository in order to
prevent servers from pulling and installing malicious packages.

Operating system updates

When Docker or VM images are used as deployment artifacts, these artifacts combine app �les
and dependencies. This allows you to use the same deployment mechanism for updating the

https://cloud.google.com/docs/authentication/production

1/23/2020 Deploying .NET apps on Google Cloud | Solutions | Google Cloud

https://cloud.google.com/solutions/deploy-dotnet-applications 8/25

operating system and for updating the app. In this case, you should make sure that a new
deployment artifact can be built and published for two separate cases. One is when a new app
version becomes available. The second is when new security updates to the operating system
or other dependencies are released.

In other cases, where the deployment artifact contains only the app �les, it's a separate task to
keep the operating system up to date. Therefore, the same implications discussed in the
context of push-based deployments apply.

Autoscaling

Having app servers pull deployment artifacts aligns well with the idea of autoscaling, and it
avoids much of the complexity that arises from combining autoscaling with push-based
deployments. Whenever a new app server is launched due to an autoscaling event, the server
contacts the repository and pulls and installs the latest deployment package.

If you're using VM or Docker images, the mechanisms for having images pulled are provided by
GCP. If you're using other packages such as zip or NuGet archives, you must con�gure app
servers to initiate a deployment after startup. You can do this either by customizing the VM
image or by using startup scripts.

Deployment targets

Historically, .NET apps ran only on Windows, and Windows did not support containers. This left
you little choice about what environment to run your app in.

With the advent of .NET Core, you can decide between running an app on Windows or on Linux.
And because both operating systems support containers, you now have multiple choices about
which environment to target.

Operating system

Although Mono has offered a way to deploy .NET apps on platforms other than Windows for
many years, it was not until the release of .NET Core that Linux became a fully supported
platform for the Microsoft development stack.

1/23/2020 Deploying .NET apps on Google Cloud | Solutions | Google Cloud

https://cloud.google.com/solutions/deploy-dotnet-applications 9/25

.NET Core provides only a subset of the capabilities of the .NET framework. Therefore, targeting

.NET Core imposes certain restrictions on apps. More importantly for existing apps, porting
from .NET Framework to .NET Core might not always be easy and cost effective; in certain
cases, it might not be possible at all.

Therefore, a fundamental question when choosing a deployment model and target is whether
to use Linux (which requires .NET Core) or Windows (which supports either .NET Core or the
.NET Framework).

The potential bene�ts of running .NET apps on Linux include the following:

You can use App Engine �exible environment
 (https://cloud.google.com/appengine/docs/�exible/dotnet/), a fully managed environment.

You can use GKE (https://cloud.google.com/kubernetes-engine/), a managed environment that
supports container orchestration.

You can avoid the extra cost of premium
 (https://cloud.google.com/compute/pricing#premiumimages) Compute Engine
 (https://cloud.google.com/compute/) images that are associated with Windows licensing.

You must weigh these bene�ts against the following potential downsides of using .NET Core on
Linux:

The effort required to port an existing .NET app to .NET Core might offset the potential
cost savings. Or as noted, it might simply not be possible to port an existing .NET app to
.NET Core.

Linux does not support IIS. Kestrel
 (https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/?view=aspnetcore-
2.1&tabs=aspnetcore2x#kestrel)

, the .NET Core web server, exhibits very good performance, but it does not offer the same
feature set as IIS. You might therefore have to use Kestrel in conjunction with a web server
like Nginx.

There is no direct equivalent of a Windows Service on Linux. Although you can usually
convert Windows services to Linux console apps that can run as a daemon, this
conversion might not always be easy.

Troubleshooting and debugging .NET Core apps on Linux requires different tools and
skills than when you use .NET on Windows. This can prove challenging if your team has
limited experience with Linux.

https://cloud.google.com/appengine/docs/flexible/dotnet/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/compute/pricing#premiumimages
https://cloud.google.com/compute/
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/?view=aspnetcore-2.1&tabs=aspnetcore2x#kestrel

1/23/2020 Deploying .NET apps on Google Cloud | Solutions | Google Cloud

https://cloud.google.com/solutions/deploy-dotnet-applications 10/25

Containers

Containers lend themselves particularly well to apps that run in a single process. Examples
include:

Windows services

Linux console apps acting as daemons

Self-hosted WCF services

Kestrel-hosted ASP.NET MVC or Web API apps

Many .NET apps target IIS. It's commonly used to manage multiple apps (in separate virtual
directories and app pools) and might therefore not match the single-process pattern.

When you move an IIS-based setup to a container, you can take different approaches:

Put IIS, with all virtual directories and pools, into a single Windows-based Docker image
using the microsoft/iis image as the base. Unless the apps are tightly coupled, this
approach is usually not advisable, because it doesn't allow apps to be updated and
deployed separately.

Use separate Windows-based Docker images for each app, each running IIS. This ensures
that you can manage apps independently. However, IIS incurs a non-negligible overhead
that can become signi�cant if you need to operate a large number of these containers.

Migrate some or all apps from IIS to Kestrel
 (https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/?view=aspnetcore-
2.1&tabs=aspnetcore2x#kestrel)

. Because Kestrel can be deployed in either a Windows-based container or a Linux-based
Docker container, this approach allows you to manage containers individually.

IIS allows multiple web apps to run under a single web site, sharing a single domain name.
When you package apps into separate containers, you can get the same functionality by using
content-based load balancing
 (https://cloud.google.com/compute/docs/load-balancing/http/content-based-example). In a similar vein,
a Google HTTP load balancer makes it unnecessary to deploy a custom reverse proxy in front
of Kestrel servers.

Most apps can be containerized; it's rare to have one that can't be. But some containerization
scenarios present challenges:

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/?view=aspnetcore-2.1&tabs=aspnetcore2x#kestrel
https://cloud.google.com/compute/docs/load-balancing/http/content-based-example

1/23/2020 Deploying .NET apps on Google Cloud | Solutions | Google Cloud

https://cloud.google.com/solutions/deploy-dotnet-applications 11/25

For IIS-managed apps, it's common for the app deployment to already be automated. But
the steps to con�gure IIS (creating app pools, bindings, and so on) are carried out
manually. When you move to containers, you have to automate all of these initial steps as
well.

Apps that rely on con�guration �les or on data that's located on disk might require
changes. For example, con�guration information can be obtained from environment
variables, and relevant �les and folders can be mounted as a volume. This keeps the
image stateless and free of environment-speci�c con�guration.

Finally, if you use Windows-based Docker containers, note that Google Cloud currently doesn't
support Hyper-V and doesn't let you run Hyper-V containers. Therefore, you can only Windows
Server containers in Google Cloud. Windows Server Containers are more lightweight than Hyper-
V containers, but Windows Server containers offer slightly weaker isolation.

Deployment constraints

Certain factors in how your app is built can impose constraints on what deployment approach
you use, as discussed in this section.

App architecture

Another factor to consider when choosing the deployment target and model is the architecture
of the app. At one end of the spectrum, an app might follow a monolithic architectural pattern,
where all app logic is implemented in a single code base and runs in a single process or IIS app
pool. At the other end of the spectrum, an app might follow a microservices pattern. In this
approach, the app consists of a number of services that run independently in separate
processes, in separate IIS app pools, or as separate Windows services.

Finally, you might have multiple, independent apps that are deployed using a uniform
deployment strategy, where each app itself might be monolithic. For the purposes of this
discussion, this approach can be considered equivalent to the microservices scenario.

In a microservices architecture, you want the app to run cost effectively while keeping services
isolated and independently manageable. You can allocate dedicated VMs for each service,
which guarantees that services can be managed and deployed individually. But this approach
can result in a large number of underutilized VMs, incurring unnecessary cost. For apps like

1/23/2020 Deploying .NET apps on Google Cloud | Solutions | Google Cloud

https://cloud.google.com/solutions/deploy-dotnet-applications 12/25

these, deployment models that allow tighter packing—in particular, container-based models—are
therefore likely to be more cost effective.

State and statelessness

When you design apps for the cloud, try to keep apps stateless and manage state externally
using a GCP-based storage service. Stateless apps offer a number of advantages, including:

They can be deployed redundantly to increase availability and capacity.

Requests can be freely distributed among instances.

They lend themselves well to autoscaling.

In case of failure, the environment (whether container or VM) can just be recreated
without the risk of data loss.

Designing apps to be stateless is not always easy, and many older apps don't follow this
practice. Still, it's worthwhile to analyze whether you can make an app stateless.

Session state

ASP.NET and ASP.NET MVC apps commonly use sessions to track user state, making the app
stateful. However, there are multiple options to limit the impact of sessions:

If the amount of session data is small, you can store state in an encrypted or signed
cookie instead.

Rather than using the default InProc session state provider, you can use the
SQLServerprovider. However, this requires a SQL Server instance, which incurs additional
cost and can impact latency and availability of the app.

You can take advantage of session a�nity
 (https://cloud.google.com/compute/docs/load-balancing/http/#session_a�nity) in Cloud Load
Balancing. This feature lets you ensure that all requests from a single client are routed to
the same app instance. However, using session a�nity can have a negative impact on the
fairness of load balancing; that is, certain app instances can end up receiving more
requests than others. In addition, if an app instance is terminated for any reason, any
sessions handled by the instance will be lost, potentially causing end user impact. Relying
on session a�nity is therefore not an ideal solution, but it can often be a viable
compromise between robustness and cost.

https://cloud.google.com/compute/docs/load-balancing/http/#session_affinity

1/23/2020 Deploying .NET apps on Google Cloud | Solutions | Google Cloud

https://cloud.google.com/solutions/deploy-dotnet-applications 13/25

In-memory caches

Apps commonly use in-memory caches to avoid redundant calculations or database lookups.
This becomes problematic if multiple instances of the app are running concurrently, because
caches can become incoherent.

To avoid incoherencies, use a distributed cache, either directly or by using the
IDistributedCache interface. Caching servers such as Redis
 (https://cloud.google.com/memorystore/) or Memcached usually have relatively low resource
demands, but they do add complexity to the overall setup.

Storage

Data in the form of images, attachments, or media �les is typically stored on disk. Using a
persistent disk on a VM for this purpose is usually not an option, because it prevents data from
being shared among multiple machines, and it risks data loss if a VM instance is recreated.
Instead, you can use one of the following approaches:

Move the data to a �le share server. This minimizes the impact on the app. However,
operating a highly available SMB or NFS server implies additional cost and maintenance
effort.

Move the data to Cloud Storage. Although this requires changes to the app, Cloud Storage
is highly available, substantially more cost e�cient than running a �le server, and requires
no additional maintenance work.

Deployment strategies

When you deploy a new version of an app, you must minimize risk and end user impact. The
three most common strategies to achieve this are Recreate, Blue/Green, and rolling
deployments.

Recreate strategy

The idea of the Recreate strategy is to stop the running app on all servers, deploy a new version,
and start the app. This strategy has the obvious drawback of causing a service interruption, but

https://cloud.google.com/memorystore/

1/23/2020 Deploying .NET apps on Google Cloud | Solutions | Google Cloud

https://cloud.google.com/solutions/deploy-dotnet-applications 14/25

it avoids potential issues that can arise when two different versions of an app temporarily
coexist and access common data.

Blue/Green strategy

The idea of the Blue/Green strategy (also referred to as Red/Black) is to deploy a new app
version on a new set of servers. When the deployment is completed, you switch all tra�c from
the old to the new set of servers. This approach temporarily requires up to twice the number of
servers as you need for production, but it avoids service interruption.

A prerequisite for this strategy is that two versions of an app can temporarily coexist and not
interfere with each other. For apps that access databases, this requires that each iteration of
changes to database schemas has to be backward compatible to at least the previous version.

Rolling deployments strategy

The idea of a rolling deployment is to update one server after another. As with the Blue/Green
strategy, this means that for a certain time, two different versions of an app coexist. Unlike the
Blue/Green deployment, however, you shift tra�c from the old to the new version gradually. As
more servers are updated, more users are routed to the new version until �nally, when the last
server has been updated, all users use the new version. A key bene�t of this approach is that
potential issues can be detected early, before all users are affected, which helps to lower the
overall risk.

Because rolling deployments require two versions of the app to coexist, this strategy often also
requires a load balancer con�guration that avoids bouncing users between versions.

Deployment options

Up to now, this article has discussed deployment models, targets, and strategies. The following
sections look at speci�c options for deploying .NET apps on Google Cloud.

App Engine �exible environment (Linux)

App Engine �exible environment provides a platform-as-a-service (PaaS) environment for .NET
Core apps. Because App Engine �exible environment is based on Linux, it's useful only for .NET

1/23/2020 Deploying .NET apps on Google Cloud | Solutions | Google Cloud

https://cloud.google.com/solutions/deploy-dotnet-applications 15/25

Core apps.

App Engine �exible environment internally uses containers to run and scale apps, but frees you
from having to build or manage container images. Instead, the app binaries can be deployed
directly. By using services
 (https://cloud.google.com/appengine/docs/standard/python/microservices-on-app-
engine#app_engine_services_as_microservices)

, App Engine �exible environment allows you to run apps that are decomposed into a number of
smaller microservices.

App Engine �exible environment can automatically scale the number of app instances
depending on load, heeding any limits that you have con�gured for the app. By default, a
minimum of two instances is maintained, although you can change
 (https://cloud.google.com/appengine/docs/�exible/python/reference/app-yaml#automatic_scaling) this.

App Engine �exible environment is most suitable for stateless apps. Although you can disable
autoscaling to accommodate stateful apps, doing so means that you're not getting many of the
bene�ts of the managed environment. In addition, although App Engine �exible environment
permits disk access, disks are considered ephemeral and are therefore not useful for tracking
persistent state.

For each instance of an app, App Engine �exible environment maintains a dedicated VM.
Because pricing is based on the number of running VMs, App Engine �exible environment is
most cost effective when the app is heavily utilized. However, when apps are accessed
infrequently, the underlying VMs might be poorly utilized, which in turn can make App Engine
�exible environment less cost effective than other deployment options, particularly GKE.

Pull-based deployment using the gcloud command-line tool

The most common way to deploy to App Engine �exible environment is to use the gcloud
command-line tool. The tool is �rst used to publish deployment artifacts to a repository
maintained in Cloud Storage. Whenever an instance is launched, the artifacts are pulled from
this repository. Deployments use the Blue/Green strategy by default.

Each deployment is tracked by a version number. In case of problems, a deployment can be
reverted to a previous version. Through tra�c splitting
 (https://www.google.com/url?q=/appengine/docs/standard/python/splitting-
tra�c&sa=D&ust=1523867182934000&usg=AFQjCNG6Fe4WhSoZCN98GmATMnYb_XyP6w)

, App Engine �exible environment also lets you run multiple versions of the app in parallel and

https://cloud.google.com/appengine/docs/standard/python/microservices-on-app-engine#app_engine_services_as_microservices
https://cloud.google.com/appengine/docs/flexible/python/reference/app-yaml#automatic_scaling
https://www.google.com/url?q=/appengine/docs/standard/python/splitting-traffic&sa=D&ust=1523867182934000&usg=AFQjCNG6Fe4WhSoZCN98GmATMnYb_XyP6w

1/23/2020 Deploying .NET apps on Google Cloud | Solutions | Google Cloud

https://cloud.google.com/solutions/deploy-dotnet-applications 16/25

to direct a certain share of the tra�c to either version. This allows you to conduct canary
deployments or A/B tests with minimal effort.

GKE (Linux)

GKE provides a fully managed Kubernetes environment. The orchestration capabilities of
Kubernetes make GKE particularly well suited for running complex microservices apps that
consist of many containers. However, even for apps that don't follow the microservices pattern,
GKE lets you run many containers on shared infrastructure in a way that's both resource
e�cient and simple to maintain.

GKE requires all parts of the app to be packaged as Docker containers. Because GKE currently
doesn't support Windows containers, these containers must be Linux based. This in turn
requires the use of .NET Core and a Linux-based environment for building containers. Building
containers in Linux can prove challenging if your CI system is Windows-based. However, both
Azure Pipelines/Team Foundation Server and Cloud Build (https://cloud.google.com/cloud-build/)

provide built-in support for building .NET Core apps and for building and publishing Linux-
based container images.

GKE offers the most �exibility for apps that are stateless. By using stateful sets and persistent
volumes, you can also run certain kinds of stateful apps on GKE.

A GKE cluster includes a number of VM instances, called nodes, on which containers are
scheduled. In a multi-zone or regional cluster, GKE can spread nodes and workloads over
multiple zones to ensure high availability.

Pricing is based on the number of nodes that are running. GKE is therefore most cost effective
when nodes are well used. You can run larger workloads on the same cluster or by
automatically scaling the number of nodes
 (https://cloud.google.com/kubernetes-engine/docs/concepts/cluster-autoscaler)as needed.

Pull-based deployment using kubectl commands

Deploying an app to GKE entails two steps:

1. Publishing Docker images to Container Registry (https://cloud.google.com/container-registry/)

or to an external Docker registry using gcloud docker push or other means. This step is
usually handled by the CI system.

https://cloud.google.com/cloud-build/
https://cloud.google.com/kubernetes-engine/docs/concepts/cluster-autoscaler
https://cloud.google.com/container-registry/

1/23/2020 Deploying .NET apps on Google Cloud | Solutions | Google Cloud

https://cloud.google.com/solutions/deploy-dotnet-applications 17/25

2. Triggering the deployment using kubectl. This step can either be handled by the CI
system or separately. Because the deployment is initiated remotely, it doesn't matter if
kubectl is run on Linux or Windows.

GKE has built-in support for the recreate and rolling deployment strategies. Although the
primitives to control deployments are �exible enough to allow other deployment strategies,
using a different strategy requires additional tooling or scripting.

Pull-based deployment using Spinnaker

If the built-in capabilities of GKE for orchestrating deployments are insu�cient for your
purpose, you can combine GKE with Spinnaker. Spinnaker has built-in support for GKE and
allows you to implement more advanced deployment strategies, including Blue/Green
deployments.

Because Spinnaker is not a managed service, you have to deploy and maintain it separately.
You can deploy Spinnaker either on separate Linux VM instances
 (https://console.cloud.google.com/marketplace/details/click-to-deploy-images/spinnaker) or in a GKE
cluster (https://cloud.google.com/solutions/continuous-delivery-spinnaker-kubernetes-engine).

Compute Engine (Windows or Linux)

Compute Engine lets you create and manage VM instances. It supports a range of Windows
Server versions and Linux distributions, plus sizing, and con�guration options. Given this
�exibility, you can use Compute Engine VM instances for a wide range of workloads.

To ensure that apps are deployed and maintained individually, deploy only a single app or
service for each VM instance. To ensure high availability, run at least two VM instances per app,
each located in a different zone. You can therefore assume that you need twice the number of
VM instances as the number of apps or services you want to deploy, regardless of the expected
load.

Compute Engine provides a simple way to implement autoscaling through managed instance
groups. Managed instance groups also provide a way to implement rolling deployments, as
discussed later in this article.

Because Compute Engine is priced by VM instance, you can assume that running apps on
Compute Engine is most cost effective when apps receive considerable load, which translates
into high utilization of the VM instances. In contrast, if the number of services and apps is large

https://console.cloud.google.com/marketplace/details/click-to-deploy-images/spinnaker
https://cloud.google.com/solutions/continuous-delivery-spinnaker-kubernetes-engine

1/23/2020 Deploying .NET apps on Google Cloud | Solutions | Google Cloud

https://cloud.google.com/solutions/deploy-dotnet-applications 18/25

but average utilization is low, other deployment options such as GKE are often more
economical, because they allow multiple apps to use common infrastructure without sacri�cing
workload isolation.

Running Windows VM instances requires you to use premium images
 (https://cloud.google.com/compute/pricing#premiumimages). These images contain licensed copies
of Windows and therefore incur additional fees. As a result, Windows VMs are generally less
cost effective than VMs that use Linux distributions such as CentOS or Debian, which do not
incur any license fees.

You can use SSH or RDP to manually set up a VM instance, either to deploy an app manually or
to handle any initial con�guration needed to prepare a machine for a �rst deployment. However,
this can lead to machines that have unique con�gurations, differing from other VM instances.
In the long run, manually setting up a VM instance can become complicated and labor
intensive. It's therefore advisable to automate the process in order to make it repeatable.

Automating app deployments on Compute Engine includes these tasks:

1. Provisioning and preparing VM instances for a �rst app deployment.

2. Performing an app deployment.

3. Servicing the OS (installing security updates).

The following two sections describe how you can handle all three steps in a uni�ed fashion
using a pull-based deployment approach. While the mechanisms and tools differ for the
approaches described in these sections, the general idea is similar to how a container-based
app is deployed using GKE.

Pull-based deployment using a managed instance group

Managed instance groups are most commonly used to implement autoscaling, but they also
provide a way to handle rolling deployments. After an instance template has been created that
refers to the new version of the app, you can use the rolling replace
 (https://cloud.google.com/compute/docs/instance-groups/updating-managed-instance-groups?
hl=en_US&_ga=2.29217404.-157260409.1512652371#starting_a_basic_rolling_update)

functionality to replace VM instances that use the old template with instances that use the new
template.

A prerequisite for this approach is that the new version of the app is being made available as
an instance template. You can accomplish this in two ways:

https://cloud.google.com/compute/pricing#premiumimages
https://cloud.google.com/compute/docs/instance-groups/updating-managed-instance-groups?hl=en_US&_ga=2.29217404.-157260409.1512652371#starting_a_basic_rolling_update

1/23/2020 Deploying .NET apps on Google Cloud | Solutions | Google Cloud

https://cloud.google.com/solutions/deploy-dotnet-applications 19/25

De�ne an instance template that uses one of the public OS images
 (https://cloud.google.com/compute/docs/images#os-compute-support). Use a startup script to
con�gure the system and to install the app from a Cloud Storage bucket, a NuGet
repository, a Docker registry, or another source. The following diagram illustrates this
approach.

Managed Instance Group

CI Pipeline

Source Code

DLLs, …

DLLs, …

Build

VM 1 VM 2 VM n… Startup Script

Artifact
Library

Instance
Template

Create a custom VM image as part of the CI/CD process, a process that's often referred to
as image baking. In this approach, you use one of the public OS images to spawn a new
VM instance, install the latest app on it, create a VM image from the instance, and make
the image available in the Google Cloud project. The entire process can be fully
automated using a tool like Packer (https://www.packer.io/). The resulting image can then
be referenced in an instance template. The following diagram illustrates this approach.

Managed Instance Group

CI Pipeline

Source Code

DLLs, …

VM Image

Build

VM 1 VM 2 VM n… Instance
Template

Image Baking

DLLs, …

Image
Library

A drawback of creating a custom image (the second option) is that image baking is a relatively
slow process, often taking several minutes. The approach therefore not only adds complexity to

https://cloud.google.com/compute/docs/images#os-compute-support
https://www.packer.io/

1/23/2020 Deploying .NET apps on Google Cloud | Solutions | Google Cloud

https://cloud.google.com/solutions/deploy-dotnet-applications 20/25

the CI/CD process, but also slows the CI/CD process down. On the upside, launching new VMs
using a custom image is a simple and fast process, which is bene�cial when you use
autoscaling.

Using startup scripts to deploy the app (the �rst option) has the opposite tradeoffs. It doesn't
incur the overhead of image baking in the CI/CD process, but it slows down the process of
creating VM instances. Furthermore, if the startup script is not fully reliable or if the systems
that the app binaries are downloaded from are not highly available, this approach can result in
lower availability.

The approach that's most suitable to your app depends on the app itself and the complexity of
the con�guration. In some scenarios, it may even be best to combine both approaches:

A custom image contains all con�guration and dependencies, but not the actual app
binaries. A new image is baked when the con�guration or any of the dependencies
change, but not for every app build. This helps avoid the slowdown of the app CI/CD
pipeline.

The app is installed using a startup script. To minimize risk and slowdown, this process
should be as simple as possible.

In a scenario where you want to deploy many different apps or services that have a common
base con�guration, this hybrid approach can avoid having to build and maintain dozens or
hundreds of almost identical images.

You can use managed instance groups to orchestrate deployments for both Linux and
Windows workloads. For Linux, using managed instance groups to deploy Docker containers on
VM instances is possible and supported by the platform
 (https://cloud.google.com/compute/docs/containers/deploying-containers). But it's advisable only for
heavily utilized apps. In other cases, deploying a single Docker container per VM provides little
advantage over using GKE or App Engine �exible environment.

As noted earlier, Windows is currently not supported by GKE. If you use Windows Server
containers, follow these guidelines for running the containers using Compute Engine and
managed instance groups:

Use either the public Windows Server 1709 Datacenter Core for Containers image or a
custom-built image with Docker preinstalled.

Use a startup script to pull the Docker image and start it as a Windows Server container
during VM startup. You can use appropriate port mappings to expose the services that are

https://cloud.google.com/compute/docs/containers/deploying-containers

1/23/2020 Deploying .NET apps on Google Cloud | Solutions | Google Cloud

https://cloud.google.com/solutions/deploy-dotnet-applications 21/25

running inside the container.

Note that a startup script is not guaranteed to run only after the Docker service has been
started. To gracefully handle the case where the script runs before Docker is available,
incorporate appropriate retry logic into the script.

When you create Windows-based images in a non-cloud environment, you might rely on
Microsoft Deployment Toolkit (MDT) (https://docs.microsoft.com/en-us/sccm/mdt/) or Windows
Deployment Services (WDS)
 (https://msdn.microsoft.com/en-us/library/windows/desktop/dd379586%28v=vs.85%29.aspx?
f=255&MSPPError=-2147217396)

. However, because managing images and creating VM instances based on custom images are
core features of Compute Engine, this additional tooling is not necessary. Compute Engine
supports not only startup scripts, but also specialization scripts for Windows-based VM
instances. Therefore, it's not usually necessary to work with custom unattend.xml �les.
However, it's still important for a Windows installation to be generalized using GCESysprep
 (https://cloud.google.com/compute/docs/instances/windows/creating-windows-os-image) before you
create an image.

Pull-based deployment using Spinnaker

Managed instance groups provide a lightweight and robust way to implement rolling
deployments, but the capabilities of managed instance groups might be insu�cient for certain
apps. To implement more sophisticated deployment strategies and pipelines, you can use
Spinnaker.

The basic approach taken by Spinnaker to orchestrate deployments on Compute Engine is
similar to the one discussed in the previous section—that is, it also relies on image baking.
Therefore, the same considerations apply.

Because Spinnaker isn't a managed service, you have to deploy and maintain it separately from
the app. You can deploy Spinnaker either on separate Linux VM instances
 (https://console.cloud.google.com/marketplace/details/click-to-deploy-images/spinnaker?project=jpassing-
188008&organizationId=433637338589)

or in a GKE cluster.

Push-based remote deployment

https://docs.microsoft.com/en-us/sccm/mdt/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd379586%28v=vs.85%29.aspx?f=255&MSPPError=-2147217396
https://cloud.google.com/compute/docs/instances/windows/creating-windows-os-image
https://console.cloud.google.com/marketplace/details/click-to-deploy-images/spinnaker?project=jpassing-188008&organizationId=433637338589

1/23/2020 Deploying .NET apps on Google Cloud | Solutions | Google Cloud

https://cloud.google.com/solutions/deploy-dotnet-applications 22/25

The pull-based deployment options discussed in previous sections offer a range of bene�ts.
But they aren't appropriate for every kind of app. In particular, stateful apps often don't lend
themselves well to this approach and might be better suited to a push-based approach.

In the push-based approach, the three deployment tasks (provisioning VM instances,
performing the app deployment, and servicing the OS) need to be handled individually. It's
possible to use the same tooling for all three tasks, but it's not uncommon to use different tools
for each task.

You can provision the app server VM instances in the same manner as other infrastructure—
common automation tools for this purpose include Deployment Manager
 (https://cloud.google.com/deployment-manager/) and Terraform. You can use startup or
specialization scripts to install the tools that are required to automate the app deployment. For
example, if you use Puppet, Chef, or Octopus Deploy, you must make sure that the agent
software for these tools is installed.

From a security perspective, to reduce the attack surface, ensure that any communication
between the deployment server and any agents running on the app server VM instances uses
the internal network. In addition, make sure that the ports being used are not exposed to the
public internet.

In an environment where autoscaling is not used, joining Windows-based app servers to an
Active Directory domain is a viable way to centralize con�guration. Using Active Directory also
lets you control management tasks such as OS servicing.

Choosing a deployment option

As noted at the beginning of this article, there is no single best way to deploy a .NET app on
Google Cloud. The best deployment options for you depend on the app and your requirements.
To pick the right model, one of the �rst questions is whether to use .NET Core or .NET
Framework and, depending on this, whether to deploy on Linux or Windows. After you've
identi�ed the target operating system, use the following decision trees to help identify a
suitable deployment model.

For deploying .NET Core apps on Linux:

https://cloud.google.com/deployment-manager/

1/23/2020 Deploying .NET apps on Google Cloud | Solutions | Google Cloud

https://cloud.google.com/solutions/deploy-dotnet-applications 23/25

Application
Containerized? NoYes

Deployment Using
Spinnaker

Application
Stateless?

Deployment Using
Image Baking

and MIG

Deployment Using
a Configuration

Management Tool

No

YesApplication
Stateless?

Multiple Applications
or Services?

Yes

Advanced Deployment
Strategies needed?

Advanced Deployment
Strategies needed?

No

Yes

Yes

No

Deployment Using
Image Baking and

Spinnaker

Deployment Using
gcloud

NoYes

Deployment Using
Kubernetes

No

App Engine Flex Kubernetes Engine

Deployment Using
Kubernetes

Compute Engine

Pull-Based Deployments Push-Based Deployments

For deploying a .NET Core or .NET Framework app on Windows:

1/23/2020 Deploying .NET apps on Google Cloud | Solutions | Google Cloud

https://cloud.google.com/solutions/deploy-dotnet-applications 24/25

Application
Stateless?

Deployment Using a
Configuration Management Tool

Advanced Deployment
Strategies Needed?

Application
Containerized?

Deployment Using
Image Baking and Spinnaker

NoYes

Compute Engine

Pull-Based Deployments Push-Based Deployments

Yes

Deployment Using
Docker and MIG

Deployment Using
Image Baking and MIG

No

Yes

No

What's next

Learn how to create a CI/CD pipeline for a .NET Core app with Azure Pipelines and GKE
 (https://cloud.google.com/solutions/creating-cicd-pipeline-vsts-kubernetes-engine) or how to
create a CI/CD pipeline for a .NET Framework app with Azure Pipelines and Compute
Engine (https://cloud.google.com/solutions/creating-cicd-pipeline-vsts-compute-engine)

Read more about .NET on Google Cloud (https://cloud.google.com/dotnet/docs/)

Install the Tools for Visual Studio (https://cloud.google.com/visual-studio/), which allow you
to interact with Google Cloud from within Visual Studio

Learn more about the App Engine .NET Flexible Environment
 (https://cloud.google.com/appengine/docs/�exible/dotnet/)

Try out other Google Cloud Platform features for yourself. Have a look at our tutorials
 (https://cloud.google.com/docs/tutorials).

https://cloud.google.com/solutions/creating-cicd-pipeline-vsts-kubernetes-engine
https://cloud.google.com/solutions/creating-cicd-pipeline-vsts-compute-engine
https://cloud.google.com/dotnet/docs/
https://cloud.google.com/visual-studio/
https://cloud.google.com/appengine/docs/flexible/dotnet/
https://cloud.google.com/docs/tutorials

1/23/2020 Deploying .NET apps on Google Cloud | Solutions | Google Cloud

https://cloud.google.com/solutions/deploy-dotnet-applications 25/25

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License
 (https://creativecommons.org/licenses/by/4.0/), and code samples are licensed under the Apache 2.0 License
 (https://www.apache.org/licenses/LICENSE-2.0). For details, see our Site Policies
 (https://developers.google.com/terms/site-policies). Java is a registered trademark of Oracle and/or its a�liates.

Last updated November 21, 2019.

https://creativecommons.org/licenses/by/4.0/
https://www.apache.org/licenses/LICENSE-2.0
https://developers.google.com/terms/site-policies

