
1/25/2020 Deploying event-sourced systems with Cloud Spanner  |  Solutions

https://cloud.google.com/solutions/deploying-event-sourced-systems-with-cloud-spanner/ 1/14

Using an architectural pattern as an example, this article explains how to use Spanner
 (/spanner/docs/) as an event-ingestion system and Pub/Sub (/pubsub/docs/) as an event ledger
to create a system that can do the following:

Write to an event source that is highly available.

Publish those writes as events for other systems to use.

Archive events for playback.

Load events into a system for analytics.

Filter events into a system for fast querying.

This article is designed for software engineers interested in learning about the uses, trade-offs,
and components of an event-sourced system
 (https://serverless.com/blog/rob-gruhl-serverless-event-sourced-nordstrom-emit-2017/). Learn how to

create a number of apps and services by using Cloud Functions (/functions/docs/) to support
your event-sourced architecture.

You can use this architectural pattern anytime you need to take an action based on writing new
data to a data source, in this case, Spanner.

This pattern is useful for managing the following scenarios:

Ecommerce shopping carts

Order management and supply chain

Wallets, payments, and charge resolutions

The following diagram illustrates the �ow of an ecommerce shopping cart system.

https://cloud.google.com/spanner/docs/
https://cloud.google.com/pubsub/docs/
https://serverless.com/blog/rob-gruhl-serverless-event-sourced-nordstrom-emit-2017/
https://cloud.google.com/functions/docs/


1/25/2020 Deploying event-sourced systems with Cloud Spanner  |  Solutions

https://cloud.google.com/solutions/deploying-event-sourced-systems-with-cloud-spanner/ 2/14

In complex systems such as ecommerce and payments, it‘s useful to track transactions by
using event-based architectures. For example, when a customer adds an item to a shopping cart
or processes a credit card for payment, you might want to trigger several downstream processes
to verify that the item is in stock and that there are funds in the custmer's account. You want to
make sure that customers can place orders at any time because your business depends on it.

The following are examples of design criteria that suggest using an event-sourced system
arhitecture::

Must handle the writing of orders and payments to the system with high availability.

Must verify that your customers receive the items they ordered (and only the items they
ordered), and that they were charged the correct amount for the purchase.

Must have deterministic failure modes (that is, you are certain that your write failed or
succeeded).

Must include a mechanism to notify dependent services that a system write that they were
interested in was made.



1/25/2020 Deploying event-sourced systems with Cloud Spanner  |  Solutions

https://cloud.google.com/solutions/deploying-event-sourced-systems-with-cloud-spanner/ 3/14

This article describes a system that can satisfy all these requirements and provide �exibility for
adding functionality later.

First you need a service that can accept writes with high availability. That system must also
provide deterministic failure modes. The system must know when a write fails so that your
writer can retry the write without fear of duplicating all or a portion of that write.

The canonical application for this scenario is a database that supports atomicity, consistency,
isolation, and durability (ACID) transactions  (https://wikipedia.org/wiki/ACID_(computer_science)),
but making databases highly available, especially for writes, is di�cult. Replication can cause
inconsistencies in data and can add cost and complexity to your architecture. Compounding
complexity is the largest design risk when high availability is a priority.

Additionally, typical high-availability database con�gurations (/sql/docs/mysql/high-availability)

cannot handle failures across availability zones without incurring replication delays. As those
delays increase, so does the probability that additional failures might lead to the loss of all of
the writes that are in transit to the replica node in another availability zone. These additional
failures mean that the writes aren't fully written to the replica prior to the failure in that zone.

The following diagram illustrates an event-sourced architecture with Spanner designed to
address the issues of complexity and cost associated with traditional high-availability
databases.

https://wikipedia.org/wiki/ACID_(computer_science)
https://cloud.google.com/sql/docs/mysql/high-availability


1/25/2020 Deploying event-sourced systems with Cloud Spanner  |  Solutions

https://cloud.google.com/solutions/deploying-event-sourced-systems-with-cloud-spanner/ 4/14

This event-sourced architecture relies on the following components, which you use Cloud
Functions to create. These components consist of apps and Cloud Functions.

Poller app: Polls Spanner, converts the record format to Avro
 (https://wikipedia.org/wiki/Apache_Avro), and publishes to Pub/Sub.

archiver: Gets events triggered by messages published to a Pub/Sub topic and writes
those records to a global archive in Cloud Storage.

bqloader: Gets triggered by records written to Cloud Storage and loads those records to a
corresponding BigQuery table.

janitor: Reads all entries written to the global archive at a �xed rate and then compresses
them for long-term storage.

replayer: Reads the records in order from long-term storage, decompresses them, and
loads them into a new Pub/Sub stream.

Materializer app: Filters records written to Pub/Sub, and then loads them to a
corresponding Redis (materialized view) database for easy query access.

https://wikipedia.org/wiki/Apache_Avro


1/25/2020 Deploying event-sourced systems with Cloud Spanner  |  Solutions

https://cloud.google.com/solutions/deploying-event-sourced-systems-with-cloud-spanner/ 5/14

After you have a system in place to accept writes, your downstream services must be noti�ed
every time something is written to the system.

Traditional databases do this in a few different ways, but usually with some variation of
listening to the write ahead log (WAL)  (https://wikipedia.org/wiki/Write-ahead_logging) or the change
data capture (CDC)  (https://wikipedia.org/wiki/Change_data_capture) stream of a database. These
solutions aren't in a useful format for readability. The format was designed to represent and
stream the changes made to the record. It wasn't designed to inform a downstream system of
events and pass along the relevant context about that event. A binary representation of just the
changes, and not a complete record, isn't useful in most situations. Another downside of that
format is that it isn't human readable, which makes debugging and auditing the stream
extremely di�cult.

Instead, you can create something that polls the database for all new entries and then passes
them along to the downstream system. Polling services are a common way to process new
records written to a database and have the following advantages:

Simple to understand and write.

Low overhead when written correctly.

Stable and independent.

Error-tolerant, both for queries and record parsing.

Flexibility in how changes are �ltered and represented.

Trade-offs to writing a polling service instead of using a conventional WAL or CDC include:

Polling the database at a short interval (less than one second) can add load to your
database.

Depending on your table layout, the query you use to poll, and how many other apps are
currently polling your database, a polling service could create resource contention (locks)
with other apps.

Polling might require you to use larger database machines and more expensive storage
(such as SSD) to handle the additional load and resource contention.

You can help to mitigate some of these trade-offs in Spanner by using read-only transactions
for your polling reads (/spanner/docs/reads) and make sure you are using SQL best practices for
e�cient and effective queries (/spanner/docs/sql-best-practices).

https://wikipedia.org/wiki/Write-ahead_logging
https://wikipedia.org/wiki/Change_data_capture
https://cloud.google.com/spanner/docs/reads
https://cloud.google.com/spanner/docs/sql-best-practices


1/25/2020 Deploying event-sourced systems with Cloud Spanner  |  Solutions

https://cloud.google.com/solutions/deploying-event-sourced-systems-with-cloud-spanner/ 6/14

To �nd all new records for a given time period, you can use the commit timestamp
 (/spanner/docs/commit-timestamp) feature in Spanner. The commit timestamp is based on
TrueTime (/spanner/docs/true-time-external-consistency) technology and gives Spanner a globally
consistent representation of when a write was committed to the database. Spanner can accept
writes in many regions around the world, and your poller can create a ledger that contains an
accurate accounting of events in order.

Cloud Functions (/functions/) is an event-driven, serverless, computing platform on Google Cloud.
These functions are stateless snippets of code that run in response to a trigger, such as an
HTTP request or an event trigger (/functions/docs/concepts/events-triggers)). In the case of event-
sources systems, Cloud Functions typically represent the individual tasks associated with an
event being published. Because they are serverless, they scale with your request volume and
don't require additional operational intervention.

Some trade-offs with Cloud Functions are:

Response times can be inconsistent.

Logging and tracing can be more di�cult based on the ephemeral nature of the startup
and execution.

Must be stateless and idempotent as retry on failure is typically automatic.

Can be di�cult to debug and reproduce errors locally depending on the state of your
logging environment.

A ledger is an append-only record of events published on an event bus or a message queue of
some kind. You can subscribe or listen for an event by either subscribing to a particular event
bus or a message queue topic, or by �ltering the collection of all messages by the noun, verb, or
particular metadata you're interested in.

In this pattern, the ledger is a single Pub/Sub topic. You can use the eventing system to trigger
Cloud Functions every time a record is written to the stream.

Make sure your subscribers don't acknowledge (/pubsub/docs/subscriber) the message, so it
remains available for other interested functions. Also, there is a limited message retention

https://cloud.google.com/spanner/docs/commit-timestamp
https://cloud.google.com/spanner/docs/true-time-external-consistency
https://cloud.google.com/functions/
https://cloud.google.com/functions/docs/concepts/events-triggers
https://cloud.google.com/pubsub/docs/subscriber
https://cloud.google.com/pubsub/docs/subscriber


1/25/2020 Deploying event-sourced systems with Cloud Spanner  |  Solutions

https://cloud.google.com/solutions/deploying-event-sourced-systems-with-cloud-spanner/ 7/14

window (/pubsub/docs/subscriber) of messages on your queue, so you must create a Cloud
Function that backs these messages up in an archive. When you want to play back archived
messages, you can use a Cloud Function to read archived messages and publish them to a new
Pub/Sub topic for consumption.

The job of the poller is to query the database at a �xed-time interval and ask for all records that
occur after a particular point in time, sorted by the commit timestamp, and in ascending order
(oldest record �rst).

This design means that you must keep track of the last timestamp that the poller saw, and you
must bootstrap the system for the �rst run. You can keep track of this timestamp by storing it in
application state, writing it to another database, or asking the ledger for its most recent record
and parsing the timestamp from there.

Storing the record in another database might add some additional complexity, because it
creates a dependency on another system which adds another point of failure. It's better to keep
the last process's timestamp in local app storage and only resort to querying the ledger if the
app fails or is restarted for some reason and the internal state is lost.

The requirements for the poller are as follows:

Fixed and consistent polling interval.

Polling interval is less than 1 second.

Bootstraps the system the �rst time it's run.

Queries all records occurring after the previously recorded timestamp.

Serializes each record into an individual Avro record.

Publishes each Avro record to a Pub/Sub-based event ledger.

Sleeps until the duration of its polling interval has elapsed.

If failure occurs, automatically retries within its �xed-time interval.

https://cloud.google.com/pubsub/docs/subscriber


1/25/2020 Deploying event-sourced systems with Cloud Spanner  |  Solutions

https://cloud.google.com/solutions/deploying-event-sourced-systems-with-cloud-spanner/ 8/14

If failure occurs, when the poller restarts, it queries the Pub/Sub stream to obtain the last
recorded timestamp. If that fails, you can start the poller with a manually con�gured
timestamp. You can also obtain the timestamp from the Cloud Storage archives.

Next, you design the poller. There are at least three different ways to design it, each with their
own trade-offs.

You can use Cloud Scheduler to schedule a Cloud Function to poll the database, you can launch
your poller in a Kubernetes cluster as a cron job and schedule it at the interval that you want, or
you can have a service which continuously runs in a Kubernetes pod and polls the database at a
�xed delay, maintaining and updating the last processed timestamp in memory.

Knowing that you must query the database at a �xed-time interval, you might consider using
Cloud Scheduler to schedule a Cloud Function to poll the database (/scheduler/docs/tut-pub-sub)

and then send the new records to a Pub/Sub stream.

This approach works, but it does involve two trade-offs. First, you must �gure out a way to
preserve the application state because Cloud Functions are stateless by de�nition. Preserving
the application state involves introducing an additional database, and adds some
inconsistencies in latency between events being written and events being added to the ledger.
Cloud Functions can sometimes take longer to spawn and run than expected. This delay
becomes more pronounced the shorter your poll interval becomes.

If all of your foreseeable downstream consumers can tolerate a variable latency that might
exceed one second on occasion, a scheduled Cloud Function might be the best option for your
system design. In that case, your Cloud Function tracks the last timestamp processed by
querying the Pub/Sub stream, or maintains that state in Cloud Storage. While reducing the
management complexity of something like Kubernetes, an additional trade-off to consider in the
case of the Cloud Function is that those additional queries add latency due to the additional call
for the timestamp, and thus can add an additional point of failure for your polling system. If you
can tolerate that additional call latency, you can use a Cloud Function here.

Another option is to launch your poller in a Kubernetes cluster as a cron job
 (/kubernetes-engine/docs/how-to/cronjobs) and schedule it at the interval you want. Unfortunately,
this approach has similar trade-offs as using Cloud Scheduler with the additional complexity of
adding Kubernetes. However, you can launch the job as a service on Kubernetes and have it
sleep for a set interval, which you control in the main-event loop of the app. You can maintain

https://cloud.google.com/scheduler/docs/tut-pub-sub
https://cloud.google.com/kubernetes-engine/docs/how-to/cronjobs


1/25/2020 Deploying event-sourced systems with Cloud Spanner  |  Solutions

https://cloud.google.com/solutions/deploying-event-sourced-systems-with-cloud-spanner/ 9/14

state and have complete control over the polling latency and the retry semantics. While this
choice comes with the additional complexity of Kubernetes, which you can mitigate by using
Google Kubernetes Engine (GKE) (/kubernetes-engine/docs/), it provides you maximum control
over the following:

The state between polls (last timestamp).

The latency between polls.

Retry semantics and duration if the Spanner read or the Pub/Sub write fails.

Automatic restart of the poller service if it dies or quits unexpectedly.

The �rst time you run the poller, it sets up all of the components required to run the event-
sourced system. This includes the Pub/Sub stream with the correct name (ideally the name of
the table) and the Cloud Storage bucket for the archiver to publish to. After all of the system
components are set up, the bootstrap process of the poller performs an initial table scan, and
processes all of the existing data. After the poller has �nished, it moves to its �xed-polling
interval and passes along the last processed commit timestamp for the polling system to use
on its �rst processing run.

After you have the poller scheduled and it's pulling the latest data, you need to represent that
data on the ledger. Because this is a generalized solution (that is, you can reuse this poller for
many different tables with different schemas) writing table-speci�c pollers and ledger
consumers isn't a scalable solution. You also need to be able to add different consumers to the
ledger without them having to know the versioned schema variations beforehand.

The following are some potential use cases:

Long-term archiving of all transactions.

Loading transactions into a data warehouse for analytics.

Loading transactions into a NoSQL database for feeding machine learning models and
potentially caching the answers to frequently asked questions closer to the user.

For these use cases, consider using a serialization  (https://wikipedia.org/wiki/Serialization) format,
such as Avro, JSON, or Protobuf. BigQuery (/bigquery/), Google's data warehouse solution,

https://cloud.google.com/kubernetes-engine/docs/
https://wikipedia.org/wiki/Serialization
https://cloud.google.com/bigquery/


1/25/2020 Deploying event-sourced systems with Cloud Spanner  |  Solutions

https://cloud.google.com/solutions/deploying-event-sourced-systems-with-cloud-spanner/ 10/14

supports ingesting data directly from Avro �les. Avro is the preferred format for loading data
into BigQuery. Loading Avro �les has the following advantages over JSON:

Faster to load (/bigquery/docs/loading-data#loading_compressed_and_uncompressed_data). The
data can be read in parallel, even if the data blocks are compressed
 (/bigquery/docs/loading-data-cloud-storage-avro).

Doesn't require typing or serialization.

Easier to parse because there aren't the inherent encoding issues sometimes found in
other formats'.

When you load Avro �les into BigQuery (/bigquery/docs/loading-data), the table schema is
automatically inferred from the self-describing source data.

Protobuf is an alternative to Avro, but for this use case Avro has two distinct advantages:

Direct ingestion support in BigQuery.

Schema is contained in the data object.

The last advantage lets consumers of the ledger pull the data off and inspect it. They don't have
to deserialize JSON and hope the format doesn't change, or pull a version of a schema registry
for a given version of that object.

For those reasons, serialize your tables from Spanner into an Avro object for each transaction
before you place it on the ledger. For more information, see how to transform a Spanner table to
an Avro record.
 (https://github.com/GoogleCloudPlatform/Data�owTemplates/blob/master/src/main/java/com/google/clo
ud/teleport/spanner/ExportTransform.java)

After you decide on the deployment model and serialization format, consider your language
options for writing the poller app. As the goal is to read data from Spanner and write to
Pub/Sub, you are limited to the languages supported by the Google Cloud APIs. Those
languages are C#, Go, Java, Node.js, PHP, Python, and Ruby.

Of the languages Spanner currently supports (/spanner/docs/reference/libraries), Avro o�cially
supports  (https://avro.apache.org/docs/1.8.2/) C#, Java, Python, PHP, and Ruby. Because you want
to have as much control as possible over the latency of your app, and you want to process the
queried tables in multiple threads, Java is a good option.

https://cloud.google.com/bigquery/docs/loading-data#loading_compressed_and_uncompressed_data
https://cloud.google.com/bigquery/docs/loading-data-cloud-storage-avro
https://cloud.google.com/bigquery/docs/loading-data
https://github.com/GoogleCloudPlatform/DataflowTemplates/blob/master/src/main/java/com/google/cloud/teleport/spanner/ExportTransform.java
https://cloud.google.com/spanner/docs/reference/libraries
https://avro.apache.org/docs/1.8.2/


1/25/2020 Deploying event-sourced systems with Cloud Spanner  |  Solutions

https://cloud.google.com/solutions/deploying-event-sourced-systems-with-cloud-spanner/ 11/14

The poller is the main app in the service, but there are several other consumers of the
stream.The �rst app you need is something that subscribes to the stream and archives each
message into Cloud Storage for historical reference. This system stores each record as a
separate �le in a bucket with the same name as the table.

Every hour (or based on your transaction frequency) there is another service that takes those
individual transaction records and compresses them into a larger �le. Depending on the
frequency of your transactions and the size of your transaction records, you might consider
compressing the individual transaction Avro �les as well.

After you have all of your historical transactions archived in Cloud Storage, you can:

Directly populate BigQuery with transaction data for analytics.

Playback historical records for training or testing of other systems.

Rebuild the content of the system of record (the Spanner database in this case) if it gets
lost or corrupted.

Create a historical read-only replica for reporting or audit.

Create a version of the database for staging or test environments.

Create a Cloud Function called archiver that is triggered anytime a transaction is added to the
stream. You need to create a new function and trigger per topic (a table in Spanner). Every time
a transaction is added to the con�gured Pub/Sub topic, the archiver Cloud Function grabs the
Avro record and writes it to a Cloud Storage bucket with the same name as the table. The Cloud
Function names the �le with the table name, captures the date and time down to the
millisecond, plus 4 random digits. This naming scheme creates an ID similar to a universally
unique identi�er (UUID)  (https://wikipedia.org/wiki/Universally_unique_identi�er).

Now you can create a new Cloud Function called bqloader to load that Avro �le directly into
BigQuery. The function is triggered when archiver uploads the �le to Cloud Storage. Every time
a transaction is loaded into Cloud Storage this Cloud Function appends that transaction entry

https://wikipedia.org/wiki/Universally_unique_identifier


1/25/2020 Deploying event-sourced systems with Cloud Spanner  |  Solutions

https://cloud.google.com/solutions/deploying-event-sourced-systems-with-cloud-spanner/ 12/14

into the correct BigQuery table. If you want to further reduce latency for things like analytics or
feeding machine learning models, you can stream
 (/bigquery/streaming-data-into-bigquery#bigquery_table_insert_rows-python) your data into BigQuery
one record at a time by using the tabledata.insertAll
 (/bigquery/docs/reference/v2/tabledata/insertAll) method. This approach enables querying data
without the delay of running a load job. Keep the quotas (/bigquery/quotas#streaming_inserts) for
loading records into BigQuery in mind.

The archiver Cloud Function writes the Avro �le to a Cloud Storage bucket. Next, you create
another Cloud Function called janitor to compress all of the individual transactions in a single
compressed �le for long-term storage. janitor names this newly created �le by using the table
name, the date, and the time span included in the �les. For example, if janitor is scheduled to
run every hour, the �le name might be table1-jan_1_2019_1200-1300.tar.gz. The janitor
Cloud Function isn't a requirement, but helps to keep the storage costs down and the Cloud
Storage buckets organized.

If you want to play the archived Avro �les in Cloud Storage, you need another Cloud Function,
called replayer, that is triggered by HTTP. The replayer Cloud Function takes the archived �les
for the time period you requested to be replayed, expands them, and publishes them, in order, on
a new Pub/Sub stream.

This Cloud Function is triggered by using an HTTP POST (/functions/docs/calling/http) request that
supplies the time period that you want replayed. The Cloud Function responds with the name of
the Pub/Sub stream after it was �nished, or with an error code and description if it couldn't
properly load all of the archived data on to the new stream.

If your archived �les become too large to consistently replay or replay becomes too slow for
your use case, this app might require something more sophisticated. You can break your
archives into smaller sections or make a different language selection for your replayer Cloud
Function.

Another option is a Data�ow job, to break the job into smaller tasks and run in parallel.
Implementing such a system is beyond the scope of this document, but there are great
examples located in the Google Cloud GitHub repository

https://cloud.google.com/bigquery/streaming-data-into-bigquery#bigquery_table_insert_rows-python
https://cloud.google.com/bigquery/docs/reference/v2/tabledata/insertAll
https://cloud.google.com/bigquery/quotas#streaming_inserts
https://cloud.google.com/functions/docs/calling/http
https://github.com/GoogleCloudPlatform/DataflowTemplates/


1/25/2020 Deploying event-sourced systems with Cloud Spanner  |  Solutions

https://cloud.google.com/solutions/deploying-event-sourced-systems-with-cloud-spanner/ 13/14

 (https://github.com/GoogleCloudPlatform/Data�owTemplates/) and the Data�ow documentation
 (/data�ow/docs/).

Having these events on the ledger, each representing a single transaction, you can integrate
different kinds of services into the system seamlessly without having to write any additional
code and without having to coordinate between different app teams.

For example, this app listens for all messages on a certain topic, �lters by a client's name, and
creates a materialized view of that customer's relevant data. Ideally, you can use this app when
you need to query information about a user and you need access to that information with very
low latency.

If you can analyze the data early, put them in fast storage, and return a detailed response, you
can improve performance for your frequently run queries.

This materializer app can consist of a Cloud Function that is triggered by a Pub/Sub topic,
�lters the information by client ID and, if the client ID matches the one it is interested in, the
Cloud Function writes the relevant data to Memorystore (/memorystore/docs/redis/).

Building an event-sourced system architecture can create new functionality and add �exibility
for any system that needs to react to or understand the relationship between events. When
deterministic ordering or high-ingest throughput is important, using Spanner as an event-
ingestion system and Pub/Sub as an event ledger can build a robust and reliable foundation for
your event-sourced architecture. After you set up an event-sourced foundation, you can discover
the many ways in which the problems that were once complicated to resolve can become
simple Cloud Functions or Pub/Sub subscriber solutions.

Functional poller, archiver, and replayer examples
 (https://github.com/GoogleCloudPlatform/spanner-event-exporter)

https://github.com/GoogleCloudPlatform/DataflowTemplates/
https://cloud.google.com/dataflow/docs/
https://cloud.google.com/memorystore/docs/redis/
https://github.com/GoogleCloudPlatform/spanner-event-exporter


1/25/2020 Deploying event-sourced systems with Cloud Spanner  |  Solutions

https://cloud.google.com/solutions/deploying-event-sourced-systems-with-cloud-spanner/ 14/14

Installing Istio on GKE (/istio/docs/istio-on-gke/installing)

Triggering Cloud Functions from Pub/Sub (/functions/docs/concepts/events-triggers)

Deploying Cloud Functions from Cloud Source Repositories
 (/source-repositories/docs/deploying-functions-from-source-repositories)

Try out other Google Cloud features for yourself. Have a look at our tutorials
 (/docs/tutorials).

https://cloud.google.com/istio/docs/istio-on-gke/installing
https://cloud.google.com/functions/docs/concepts/events-triggers
https://cloud.google.com/source-repositories/docs/deploying-functions-from-source-repositories
https://cloud.google.com/docs/tutorials

