
1/25/2020 Deploying Memcached on Google Kubernetes Engine  |  Solutions

https://cloud.google.com/solutions/deploying-memcached-on-kubernetes-engine 1/18

In this tutorial, you learn how to deploy a cluster of distributed Memcached
 (https://memcached.org/) servers on Google Kubernetes Engine (GKE (/kubernetes-engine/) using
Kubernetes (https://kubernetes.io/), Helm (https://helm.sh), and Mcrouter
 (https://github.com/facebook/mcrouter). Memcached is a popular open source, multi-purpose
caching system. It usually serves as a temporary store for frequently used data to speed up web
applications and lighten database loads.

Memcached has two main design goals:

Simplicity: Memcached functions like a large hash table (https://wikipedia.org/wiki/Hash_table)

and offers a simple API to store and retrieve arbitrarily shaped objects by key.

Speed: Memcached holds cache data exclusively in random-access memory (RAM),
making data access extremely fast.

Memcached is a distributed system that allows its hash table's capacity to scale horizontally
across a pool of servers. Each Memcached server operates in complete isolation from the other
servers in the pool. Therefore, the routing and load balancing between the servers must be done
at the client level. Memcached clients apply a consistent hashing
 (https://wikipedia.org/wiki/Consistent_hashing) scheme to appropriately select the target servers. This
scheme guarantees the following conditions:

The same server is always selected for the same key.

Memory usage is evenly balanced between the servers.

A minimum number of keys are relocated when the pool of servers is reduced or expanded.

The following diagram illustrates at a high level the interaction between a Memcached client and
a distributed pool of Memcached servers.

https://memcached.org/
https://cloud.google.com/kubernetes-engine/
https://kubernetes.io/
https://helm.sh/
https://github.com/facebook/mcrouter
https://wikipedia.org/wiki/Hash_table
https://wikipedia.org/wiki/Consistent_hashing


1/25/2020 Deploying Memcached on Google Kubernetes Engine  |  Solutions

https://cloud.google.com/solutions/deploying-memcached-on-kubernetes-engine 2/18

Figure 1: High-level interaction between a Memcached client and a distributed pool of
Memcached servers.

Learn about some characteristics of Memcached's distributed architecture.

Deploy a Memcached service to GKE using Kubernetes and Helm.

Deploy Mcrouter, an open source Memcached proxy, to improve the system's performance.

This tutorial uses the following billable components of Google Cloud:

Compute Engine

To generate a cost estimate based on your projected usage, use the pricing calculator
 (/products/calculator). New Google Cloud users might be eligible for a free trial (/free-trial).

https://cloud.google.com/products/calculator
https://cloud.google.com/free-trial


1/25/2020 Deploying Memcached on Google Kubernetes Engine  |  Solutions

https://cloud.google.com/solutions/deploying-memcached-on-kubernetes-engine 3/18





1. Sign in (https://accounts.google.com/Login) to your Google Account.

If you don't already have one, sign up for a new account (https://accounts.google.com/SignUp).

2. In the Cloud Console, on the project selector page, select or create a Cloud project.

Note: If you don't plan to keep the resources that you create in this procedure, create a project instead of

selecting an existing project. After you �nish these steps, you can delete the project, removing all

resources associated with the project.

Go to the project selector page (https://console.cloud.google.com/projectselector2/home/dashboard)

3. Make sure that billing is enabled for your Google Cloud project. Learn how to con�rm billing
is enabled for your project (/billing/docs/how-to/modify-project).

4. Enable the Compute Engine API.

Enable the API (https://console.cloud.google.com/�ows/enableapi?apiid=compute_component)

5. Start a Cloud Shell instance.

OPEN Cloud Shell (https://console.cloud.google.com/?cloudshell=true)

One simple way to deploy a Memcached service to GKE is to use a Helm (https://helm.sh) chart. To
proceed with the deployment, follow these steps in Cloud Shell:

1. Create a new GKE cluster of three nodes:

Note: The cluster's zone speci�ed here is arbitrary for the purposes of this tutorial. You can select

another zone for your cluster from the available zones

 (/compute/docs/regions-zones/regions-zones#available).

https://accounts.google.com/Login
https://accounts.google.com/SignUp
https://console.cloud.google.com/projectselector2/home/dashboard
https://cloud.google.com/billing/docs/how-to/modify-project
https://console.cloud.google.com/flows/enableapi?apiid=compute_component
https://console.cloud.google.com/?cloudshell=true
https://helm.sh/
https://cloud.google.com/compute/docs/regions-zones/regions-zones#available


1/25/2020 Deploying Memcached on Google Kubernetes Engine  |  Solutions

https://cloud.google.com/solutions/deploying-memcached-on-kubernetes-engine 4/18

2. Download the helm binary archive:

3. Unzip the archive �le to your local system:

4. Add the helm binary's directory to your PATH environment variable:

This command makes the helm binary discoverable from any directory during the current
Cloud Shell session. To make this con�guration persist across multiple sessions, add the
command to your Cloud Shell user's ~/.bashrc �le.

5. Create a service account with the cluster admin role for Tiller, the Helm server:

6. Initialize Tiller in your cluster and update information of available charts:

7. Install a new Memcached Helm chart
 (https://github.com/kubernetes/charts/tree/master/stable/memcached) release with three replicas,
one for each node:

https://github.com/kubernetes/charts/tree/master/stable/memcached


1/25/2020 Deploying Memcached on Google Kubernetes Engine  |  Solutions

https://cloud.google.com/solutions/deploying-memcached-on-kubernetes-engine 5/18

The Memcached Helm chart uses a StatefulSet controller
 (https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/). One bene�t of using a
StatefulSet controller is that the pods' names are ordered and predictable. In this case, the
names are mycache-memcached-{0..2}. This ordering makes it easier for Memcached clients
to reference the servers.

8. To see the running pods, run the following command:

The Google Cloud Console output looks like this:

The Memcached Helm chart uses a headless service
 (https://kubernetes.io/docs/concepts/services-networking/service/#headless-services). A headless service
exposes IP addresses for all of its pods so that they can be individually discovered.

1. Verify that the deployed service is headless:

The output None con�rms that the service has no clusterIP and that it is therefore
headless.

The service creates a DNS record for a hostname of the form:

https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/services-networking/service/#headless-services


1/25/2020 Deploying Memcached on Google Kubernetes Engine  |  Solutions

https://cloud.google.com/solutions/deploying-memcached-on-kubernetes-engine 6/18

In this tutorial, the service name is mycache-memcached. Because a namespace was not
explicitly de�ned, the default namespace is used, and therefore the entire host name is
mycache-memcached.default.svc.cluster.local. This hostname resolves to a set of IP
addresses and domains for all three pods exposed by the service. If, in the future, some
pods get added to the pool, or old ones get removed, kube-dns
 (https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/) will automatically
update the DNS record.

It is the client's responsibility to discover the Memcached service endpoints, as described in
the next steps.

2. Retrieve the endpoints' IP addresses:

The output is similar to the following:

Notice that each Memcached pod has a separate IP address, respectively 10.36.0.32,
10.36.0.33, and 10.36.1.25. These IP addresses might differ for your own server instances.
Each pod listens to port 11211, which is Memcached's default port.

3. For an alternative to step 2, retrieve those same records using a standard DNS query with
the nslookup command:

The output is similar to the following:

https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/


1/25/2020 Deploying Memcached on Google Kubernetes Engine  |  Solutions

https://cloud.google.com/solutions/deploying-memcached-on-kubernetes-engine 7/18

Notice that each server has its own domain name of the following form:

For example, the domain for the mycache-memcached-0 pod is:

4. For another alternative to step 2, perform the same DNS inspection by using a programming
language like Python:

a. Start a Python interactive console inside your cluster:

b. In the Python console, run these commands:

The output is similar to the following:

5. Test the deployment by opening a telnet session with one of the running Memcached
servers on port 11211:

At the telnet prompt, run these commands using the Memcached ASCII protocol
 (https://github.com/memcached/memcached/blob/master/doc/protocol.txt):

https://github.com/memcached/memcached/blob/master/doc/protocol.txt


1/25/2020 Deploying Memcached on Google Kubernetes Engine  |  Solutions

https://cloud.google.com/solutions/deploying-memcached-on-kubernetes-engine 8/18

The resulting output is shown here in bold:

You are now ready to implement the basic service discovery logic shown in the following
diagram.



1/25/2020 Deploying Memcached on Google Kubernetes Engine  |  Solutions

https://cloud.google.com/solutions/deploying-memcached-on-kubernetes-engine 9/18

Figure 2: Service discovery logic.

At a high level, the service discovery logic consists of the following steps:

1. The application queries kube-dns for the DNS record of mycache-
memcached.default.svc.cluster.local.

2. The application retrieves the IP addresses associated with that record.

3. The application instantiates a new Memcached client and provides it with the retrieved IP
addresses.

4. The Memcached client's integrated load balancer connects to the Memcached servers at the
given IP addresses.

You now implement this service discovery logic by using Python:

1. Deploy a new Python-enabled pod in your cluster and start a shell session inside the pod:

2. Install the pymemcache (https://pymemcache.readthedocs.io) library:

https://pymemcache.readthedocs.io/


1/25/2020 Deploying Memcached on Google Kubernetes Engine  |  Solutions

https://cloud.google.com/solutions/deploying-memcached-on-kubernetes-engine 10/18

3. Start a Python interactive console by running the python command.

4. In the Python console, run these commands:

The output is as follows:

The b pre�x signi�es a bytes literal
 (https://docs.python.org/3/reference/lexical_analysis.html#string-and-bytes-literals), which is the
format in which Memcached stores data.

5. Exit the Python console:

6. To exit the pod's shell session, press Control+D.

As your caching needs grow, and the pool scales up to dozens, hundreds, or thousands of
Memcached servers, you might run into some limitations. In particular, the large number of open
connections from Memcached clients might place a heavy load on the servers, as the following
diagram shows.

https://docs.python.org/3/reference/lexical_analysis.html#string-and-bytes-literals


1/25/2020 Deploying Memcached on Google Kubernetes Engine  |  Solutions

https://cloud.google.com/solutions/deploying-memcached-on-kubernetes-engine 11/18

Figure 3: High number of open connections when all Memcached clients access all Memcached
servers directly.

To reduce the number of open connections, you must introduce a proxy to enable connection
pooling, as in the following diagram.



1/25/2020 Deploying Memcached on Google Kubernetes Engine  |  Solutions

https://cloud.google.com/solutions/deploying-memcached-on-kubernetes-engine 12/18

Figure 4: Using a proxy to reduce the number of open connections.

Mcrouter (https://github.com/facebook/mcrouter) (pronounced "mick router"), a powerful open source
Memcached proxy, enables connection pooling. Integrating Mcrouter is seamless, because it uses
the standard Memcached ASCII protocol. To a Memcached client, Mcrouter behaves like a normal
Memcached server. To a Memcached server, Mcrouter behaves like a normal Memcached client.

To deploy Mcrouter, run the following commands in Cloud Shell.

1. Delete the previously installed mycache Helm chart release:

2. Deploy new Memcached pods and Mcrouter pods by installing a new Mcrouter Helm chart
 (https://github.com/kubernetes/charts/tree/master/stable/mcrouter) release:

The proxy pods are now ready to accept requests from client applications.

https://github.com/facebook/mcrouter
https://github.com/kubernetes/charts/tree/master/stable/mcrouter


1/25/2020 Deploying Memcached on Google Kubernetes Engine  |  Solutions

https://cloud.google.com/solutions/deploying-memcached-on-kubernetes-engine 13/18

3. Test this setup by connecting to one of the proxy pods. Use the telnet command on port
5000, which is Mcrouter's default port.

In the telnet prompt, run these commands:

The commands set and echo the value of your key.

You have now deployed a proxy that enables connection pooling.

To increase resilience, it is common practice to use a cluster with multiple nodes. This tutorial
uses a cluster with three nodes. However, using multiple nodes also brings the risk of increased
latency caused by heavier network tra�c between nodes.

You can reduce this risk by connecting client application pods only to a Memcached proxy pod
that is on the same node. The following diagram illustrates this con�guration.



1/25/2020 Deploying Memcached on Google Kubernetes Engine  |  Solutions

https://cloud.google.com/solutions/deploying-memcached-on-kubernetes-engine 14/18

Figure 5: Topology for the interactions between application pods, Mcrouter pods, and
Memcached pods across a cluster of three nodes.

Perform this con�guration as follows:

1. Ensure that each node contains one running proxy pod. A common approach is to deploy
the proxy pods with a DaemonSet controller
 (https://kubernetes.io/docs/concepts/workloads/controllers/daemonset). As nodes are added to
the cluster, new proxy pods are automatically added to them. As nodes are removed from
the cluster, those pods are garbage-collected. In this tutorial, the Mcrouter Helm chart that
you deployed earlier uses a DaemonSet controller
 (https://github.com/kubernetes/charts/blob/master/stable/mcrouter/templates/daemonset.yaml) by
default. So, this step is already complete.

2. Set a hostPort value in the proxy container's Kubernetes parameters to make the node
listen to that port and redirect tra�c to the proxy. In this tutorial, the Mcrouter Helm chart
uses this parameter by default for port 5000. So this step is also already complete.

https://kubernetes.io/docs/concepts/workloads/controllers/daemonset
https://github.com/kubernetes/charts/blob/master/stable/mcrouter/templates/daemonset.yaml


1/25/2020 Deploying Memcached on Google Kubernetes Engine  |  Solutions

https://cloud.google.com/solutions/deploying-memcached-on-kubernetes-engine 15/18

3. Expose the node name as an environment variable inside the application pods by using the
spec.env entry and selecting the spec.nodeName fieldRef value. See more about this
method in the Kubernetes documentation
 (https://kubernetes.io/docs/tasks/inject-data-application/environment-variable-expose-pod-
information/)

.

a. Deploy some sample application pods:

4. Verify that the node name is exposed, by looking inside one of the sample application pods:

This command outputs the node's name in the following form:

https://kubernetes.io/docs/tasks/inject-data-application/environment-variable-expose-pod-information/


1/25/2020 Deploying Memcached on Google Kubernetes Engine  |  Solutions

https://cloud.google.com/solutions/deploying-memcached-on-kubernetes-engine 16/18

The sample application pods are now ready to connect to the Mcrouter pod that runs on their
respective mutual nodes at port 5000, which is Mcrouter's default port.

1. Initiate a connection for one of the pods by opening a telnet session:

2. In the telnet prompt, run these commands:

Resulting output:

Finally, as an illustration, the following Python code is a sample program that performs this
connection by retrieving the NODE_NAME variable from the environment and using the pymemcache
library:



1/25/2020 Deploying Memcached on Google Kubernetes Engine  |  Solutions

https://cloud.google.com/solutions/deploying-memcached-on-kubernetes-engine 17/18

To avoid incurring charges to your Google Cloud Platform account for the resources used in this
tutorial:

1. Run the following command to delete the GKE cluster:

2. Optionally, delete the Helm binary:

Explore the many other features (https://github.com/facebook/mcrouter/wiki#features) that
Mcrouter offers beyond simple connection pooling, such as failover replicas, reliable delete
streams, cold cache warmup, multi-cluster broadcast.

Explore the source �les of the Memcached chart
 (https://github.com/kubernetes/charts/tree/master/stable/memcached) and Mcrouter chart
 (https://github.com/kubernetes/charts/tree/master/stable/mcrouter) for more details on the
respective Kubernetes con�gurations.

Read about effective techniques (/appengine/articles/scaling/memcache) for using Memcached
on App Engine. Some of them apply to other platforms, such as GKE.

Try out other Google Cloud features for yourself. Have a look at our tutorials (/docs/tutorials).

https://github.com/facebook/mcrouter/wiki#features
https://github.com/kubernetes/charts/tree/master/stable/memcached
https://github.com/kubernetes/charts/tree/master/stable/mcrouter
https://cloud.google.com/appengine/articles/scaling/memcache
https://cloud.google.com/docs/tutorials


1/25/2020 Deploying Memcached on Google Kubernetes Engine  |  Solutions

https://cloud.google.com/solutions/deploying-memcached-on-kubernetes-engine 18/18


