
1/25/2020 Heterogeneous Deployment Patterns with Kubernetes  |  Solutions

https://cloud.google.com/solutions/heterogeneous-deployment-patterns-with-kubernetes/ 1/17

This article describes common patterns for creating production-level, heterogeneous deployments
using Kubernetes (https://kubernetes.io/). The article reviews three use cases and describes the
architectural details you might use to create deployments for them. The architectural descriptions
include Kubernetes in general and Google Kubernetes Engine (GKE) (/kubernetes-engine/) in particular.

Heterogeneous deployments typically involve connecting two or more distinct infrastructure
environments or regions to address a speci�c technical or operational need. Heterogeneous
deployments are called "hybrid", "multi-cloud", or "public-private", depending upon the speci�cs of the
deployment. For the purposes of this article, heterogeneous deployments include those that span
regions in a single cloud environment, multiple public cloud environments (multi-cloud), or a
combination of on-premises and public cloud environments (hybrid or public-private).

Various business and technical challenges can arise in deployments that are limited to a single
environment or region:

Maxed out resources: In any single environment, particularly in on-premises environments, you
might not have the compute, networking, and storage resources to meet your production needs.

Limited geographic reach: Deployments in a single environment require people who are
geographically distant from one another to access one deployment. Their tra�c might travel
around the world to a central location.

Limited availability: Web-scale tra�c patterns challenge apps to remain fault-tolerant and
resilient.

Vendor lock-in: Vendor-level platform and infrastructure abstractions can prevent you from
porting apps.

In�exible resources: Your resources might be limited to a particular set of compute, storage, or
networking offerings.

Heterogeneous deployments can help address these challenges, but they must be architected using
programmatic and deterministic processes and procedures. One-off or ad-hoc deployment
procedures can cause deployments or processes to be brittle and intolerant of failures. Ad-hoc

https://kubernetes.io/
https://cloud.google.com/kubernetes-engine/


1/25/2020 Heterogeneous Deployment Patterns with Kubernetes  |  Solutions

https://cloud.google.com/solutions/heterogeneous-deployment-patterns-with-kubernetes/ 2/17

processes can lose data or drop tra�c. Good deployment processes must be repeatable and use
proven approaches for managing provisioning, con�guration, and maintenance.

Three common scenarios for heterogeneous deployment are multi-cloud deployments, fronting on-
premises data, and continuous integration/continuous delivery (CI/CD) processes.

The following sections describe some common use cases for heterogeneous deployments, along
with well-architected approaches using Kubernetes and other infrastructure resources.

Multi-cloud deployments, in which all deployments are relatively similar, are some of the most
common heterogeneous deployment patterns used with Kubernetes.

One use for multi-cloud deployments involves choosing how tra�c is directed. In the simplest
deployments, you might choose to send speci�c percentages of inbound tra�c to speci�c
deployments. In deployments built from on-premises and public cloud infrastructure, you might send
more tra�c to cloud infrastructure, either to facilitate a longer term migration or to get around
constrained, on-premises resources.

Another common use for multi-cloud deployments is to con�gure a highly available deployment, able
to withstand the failure of any single environment. In these scenarios, you can orchestrate the same
Kubernetes deployment into each of the desired environments. Each deployment should be capable
of scaling up to meet the needs of all tra�c, should any single environment fail.

Finally, you can use multi-cloud deployments to create deployments that are physically closer to
users. Placing deployments as near as possible to users can minimize request and response latency.

A robust multi-cloud deployment uses a DNS tra�c-management service to resolve DNS queries to
the individual deployments. For general tra�c-splitting use cases, you can con�gure DNS tra�c-
management mechanisms to split tra�c, by percentages, across individual deployments.



1/25/2020 Heterogeneous Deployment Patterns with Kubernetes  |  Solutions

https://cloud.google.com/solutions/heterogeneous-deployment-patterns-with-kubernetes/ 3/17

For highly available deployments, you can con�gure the DNS mechanism by using custom health
checks from each environment. When an environment becomes unhealthy, it stops sending healthy
status updates, and the DNS mechanism can shift tra�c to deployments that are still healthy.

When latency to the user is critical, DNS mechanisms can use an inbound request's IP address to
determine its approximate location, and then direct tra�c to the deployment closest to that
geographical region. You can use DNS infrastructure service providers, such as NS1 (https://ns1.com/),
Dyn (https://dyn.com/), Akamai (https://www.akamai.com/), and others, to direct tra�c across multiple
deployments.

As DNS directs tra�c to particular deployments, a load balancer should receive incoming requests
and then direct them to a Kubernetes cluster. Kubernetes offers two mechanisms to expose pods
 (https://kubernetes.io/docs/user-guide/pods/) to incoming tra�c: Services
 (https://kubernetes.io/docs/user-guide/services/) and Ingress (https://kubernetes.io/docs/user-guide/ingress/).

When pods are deployed in a Kubernetes cluster, they are not easily accessible to other apps or
systems inside or outside of the cluster. To make pods accessible, you must �rst create a service. By
default, a service automatically accepts connections from within the cluster, but it can also be
con�gured to accept connections from outside the cluster.

https://ns1.com/
https://dyn.com/
https://www.akamai.com/
https://kubernetes.io/docs/user-guide/pods/
https://kubernetes.io/docs/user-guide/services/
https://kubernetes.io/docs/user-guide/ingress/


1/25/2020 Heterogeneous Deployment Patterns with Kubernetes  |  Solutions

https://cloud.google.com/solutions/heterogeneous-deployment-patterns-with-kubernetes/ 4/17

When con�guring a service to accept external requests, you con�gure the service type as either
NodePort or LoadBalancer.

Setting the service type to NodePort exposes a unique port for each service on all nodes in the
Kubernetes cluster. This unique port allows each node to accept connections and proxy load balance
incoming requests to the appropriate pods.

The LoadBalancer service type is a superset of NodePort. In addition to providing the port
con�guration on each node, setting the type to LoadBalancer automatically provisions an external
load balancer and con�gures it to direct tra�c to the cluster and into the subsequent pods.

Automatic creation and con�guration is available only in supported cloud environments, such as Google Cloud.

Services in Kubernetes are a Layer 4 (https://wikipedia.org/wiki/Transport_layer) construct, meaning they
can support accessibility only by using IP addresses and port numbers. Ingress, an HTTP(S) (Layer 7
 (https://wikipedia.org/wiki/Application_layer)) load-balancing mechanism, is a collection of rules that
allow inbound connections to reach backend Kubernetes cluster services. You can con�gure the
Ingress mechanism to give Services additional app layer functionality such as externally reachable
URLs, inbound-tra�c load balancing, SSL termination, or name-based virtual hosting. Inbound tra�c
can be directed to pods, exposed through services, by using HTTP host headers or HTTP URL paths.

https://wikipedia.org/wiki/Transport_layer
https://wikipedia.org/wiki/Application_layer


1/25/2020 Heterogeneous Deployment Patterns with Kubernetes  |  Solutions

https://cloud.google.com/solutions/heterogeneous-deployment-patterns-with-kubernetes/ 5/17

When you run multi-cloud deployments, you might need to run one or more shared services, such as a
database, in each deployment. The communication between shared services needs to be low-latency
and secure.

For low-latency, high-bandwidth connectivity, you can connect the underlying networks in each
deployment by using direct peering or third-party managed network interconnects. Google Cloud
offers direct connectivity through peering (/interconnect/direct-peering) directly with Google at any one
of the available network edge locations. To facilitate direct peering, there are a number of technical
requirements (https://peering.google.com/#/options/peering). When it is not possible to meet those
requirements, another option is Cloud Interconnect (/interconnect/). You can use Cloud Interconnect
service providers (/interconnect/docs/how-to/carrier-peering#service_providers) to connect to Google's
network edge with enterprise-grade connectivity.

https://cloud.google.com/interconnect/direct-peering
https://peering.google.com/#/options/peering
https://cloud.google.com/interconnect/
https://cloud.google.com/interconnect/docs/how-to/carrier-peering#service_providers


1/25/2020 Heterogeneous Deployment Patterns with Kubernetes  |  Solutions

https://cloud.google.com/solutions/heterogeneous-deployment-patterns-with-kubernetes/ 6/17

After connectivity is in place, the next step is to secure the link between each environment by using
VPN. In each deployment, you need a VPN gateway to secure tra�c between the deployments. In
Google Cloud, Cloud VPN (/vpn/docs/concepts/overview) secures tra�c by using an IPSec VPN
connection. Cloud VPN supports multiple VPN tunnels to aggregate bandwidth, and it supports static
or dynamic routing by using Cloud Router (/router/docs/).

In your multi-cloud deployment, you might want to administer and control each Kubernetes cluster as
an individual entity. To do this, you must manually create the pods and services in each cluster. The
bene�t here is that, while each deployment might have some shared apps and services, it might also
have apps and services suited only for itself.

For example, you might need your deployments to be geographically distributed, but there might be
country- or region-speci�c services that are not appropriate for all geographies.

Deployments in which tra�c splitting is unevenly distributed might need to deploy pods and services
on a per-cluster basis, to ensure incoming tra�c and requests are handled appropriately.

Multi-cloud deployments should use service discovery to ensure that different apps and services can
easily �nd one another at run time. Service discovery eliminates the need for complex or brittle
naming schemes or conventions that might have to be known prior to deployment. Service discovery
mechanisms need to be transparent to the source and destination apps. In multi-cloud deployments,
these mechanisms must enable apps and services to discover services running locally and remotely
in other clusters.

In deployments architected and deployed as standalone individual clusters, service discovery
mechanisms need to be data center aware. That is, they must be able to operate as coordinated
distributed systems, with the ability to send requests to the appropriate cluster based on the
incoming request, local availability, and load capacity. Third-party systems such as Consul
 (https://www.consul.io/), Linkerd (https://linkerd.io/), and others, can facilitate cross-cluster and cross-
environment service discovery with multi-cloud Kubernetes deployments.

Kubernetes provides support for resolving private DNS zones in the Kubernetes cluster. This support
is useful in hybrid or multi-cloud scenarios in which the fully quali�ed domain names of the other
clusters are known and tra�c can be easily routed to them. You can set up access to private "stub"
domains by using ConfigMap. You can use Kubernetes support for resolving private DNS zones as a

https://cloud.google.com/vpn/docs/concepts/overview
https://cloud.google.com/router/docs/
https://www.consul.io/
https://linkerd.io/


1/25/2020 Heterogeneous Deployment Patterns with Kubernetes  |  Solutions

https://cloud.google.com/solutions/heterogeneous-deployment-patterns-with-kubernetes/ 7/17

standalone mechanism to send requests to speci�c Kubernetes clusters, or in conjunction with
external systems such as Consul.

The following diagram shows an example multi-cloud deployment architecture.



1/25/2020 Heterogeneous Deployment Patterns with Kubernetes  |  Solutions

https://cloud.google.com/solutions/heterogeneous-deployment-patterns-with-kubernetes/ 8/17



1/25/2020 Heterogeneous Deployment Patterns with Kubernetes  |  Solutions

https://cloud.google.com/solutions/heterogeneous-deployment-patterns-with-kubernetes/ 9/17

You can architect your cloud deployments to extend capabilities beyond what is available in your
private or on-premises deployments. For example, you can architect and deploy cloud-based apps
that can access private data systems or infrastructure.

Recall that private or on-premises deployments might be limited in availability, portability, or resource
�exibility. Migrating to cloud-based deployments can address these limitations, but might not be
possible due to legacy architectures, security compliance, or other software requirements. In such
scenarios, you can build and deploy new apps to cloud environments that have greater �exibility or
capability than private or on-premises environments.

The following diagram shows an example architecture that demonstrates cloud apps fronting on-
premises data infrastructure.



1/25/2020 Heterogeneous Deployment Patterns with Kubernetes  |  Solutions

https://cloud.google.com/solutions/heterogeneous-deployment-patterns-with-kubernetes/ 10/17

For deployments in which cloud apps are fronting on-premises data infrastructure, you need secure,
low-latency connectivity to minimize the overall app response time for your users. You can use Cloud
Interconnect (/interconnect/) or direct peering (/interconnect/direct-peering) to minimize latency and
maximize available bandwidth between your on-premises and cloud environments. After connectivity
is established, each deployment must have a VPN gateway to secure tra�c between the
deployments. In Google Cloud, Cloud VPN (/vpn/docs/concepts/overview) secures tra�c with an IPSec
VPN connection. Cloud VPN supports multiple VPN tunnels to aggregate bandwidth, and it supports

https://cloud.google.com/interconnect/
https://cloud.google.com/interconnect/direct-peering
https://cloud.google.com/vpn/docs/concepts/overview


1/25/2020 Heterogeneous Deployment Patterns with Kubernetes  |  Solutions

https://cloud.google.com/solutions/heterogeneous-deployment-patterns-with-kubernetes/ 11/17

static or dynamic routing using Cloud Router (/router/docs/). Because security is a critical concern
when fronting on-premises data infrastructure, you should con�gure routes and on-premises �rewalls
to allow tra�c from only speci�c sets of Google Cloud instances.

In the cloud portion of such hybrid deployments, the architectural components must include an
appropriate load balancer, app hosting infrastructure, a VPN gateway, and a service discovery
mechanism. The choice of load balancer will depend on the requirements for end-user facing apps.
For deployments on Google Cloud, Cloud Load Balancing (/load-balancing/) offers support for
HTTP(S), TCP, and UDP with a single, globally available, anycast IP.

In hybrid scenarios such as these, you can deploy pods and services on GKE (/kubernetes-engine/) , a
managed Kubernetes deployment available in Google Cloud. GKE directs outbound tra�c to the on-
premises infrastructure. GKE uses Cloud VPN to secure the tra�c, and it uses Cloud Router to
con�gure static or dynamic routes. This con�guration ensures that only tra�c from the GKE cluster
traverses the VPN connection.

The on-premises portion of this deployment contains the data infrastructure backing the cloud apps.
For most deployments of this nature, deploying a CRUD API
 (https://wikipedia.org/wiki/Create,_read,_update_and_delete) in front of the data systems offers several
bene�ts.

If the data systems require high levels of security or compliance, a CRUD API can be useful to help
audit and log inbound connections and queries. If the data infrastructure runs on a legacy system, a
CRUD API can help provide more-modern connectivity options for newer apps.

In both cases, the CRUD API can help decouple built-in database authentication and authorization
mechanisms from those needed by apps, and provide only as much CRUD functionality as the apps
require. Speci�cally, if only a subset of data needs to be exposed to downstream apps, an API can be
useful to manage access to the data.

Through auditing connections and queries, the API can also help de�ne the long- term migration
strategy of the underlying data. If only a subset of data is needed, and it doesn't fall under stringent
security or compliance policies, that data could be migrated to cloud platforms.

The architecture diagram above shows the CRUD API hosted in Kubernetes running on-premises.
Using Kubernetes on premises is not technically required, but it offers advantages: as more teams

https://cloud.google.com/router/docs/
https://cloud.google.com/load-balancing/
https://cloud.google.com/kubernetes-engine/
https://wikipedia.org/wiki/Create,_read,_update_and_delete


1/25/2020 Heterogeneous Deployment Patterns with Kubernetes  |  Solutions

https://cloud.google.com/solutions/heterogeneous-deployment-patterns-with-kubernetes/ 12/17

consider Kubernetes as a deployment target in cloud infrastructure, they can bene�t from developing
additional expertise in using and operating the system.

The on-premises infrastructure must con�gure the VPN gateway and any �rewalls to allow tra�c to
reach the CRUD API from only known sources, to minimize potential security issues.

In hybrid deployment scenarios, you should use service discovery to ensure that different apps and
services can easily connect to one another at run time. Over time, additional cloud apps might be
deployed that leverage different components of the on-premises CRUD API. The CRUD API might add
additional functionality over time, such as task-speci�c APIs or APIs to front additional on-premises
data infrastructure. In these kinds of deployment scenarios, the release cycle of cloud apps versus
on-premises CRUD functionality might differ signi�cantly. Using an external service discovery
mechanism, such as Consul (https://www.consul.io/) or Linkerd (https://linkerd.io/), can provide loose
coupling of resources and versions, so that they might iterate independently in each environment.

If you plan to deploy cloud apps only in GKE or Kubernetes, you can con�gure the internal Kubernetes
DNS mechanism kube-dns to resolve private DNS domains to private IP addresses in the on-premises
environment. In that con�guration, pods running in the cloud environment can use standard DNS
queries to easily access services running in the on-premises environment. For more information, refer
to Con�guring Private DNS Zones and Upstream Nameservers in Kubernetes
 (https://kubernetes.io/blog/2017/04/con�guring-private-dns-zones-upstream-nameservers-kubernetes/).

Multi-cloud workloads that start from existing on-premises deployments can bene�t from migrating
more-focused workloads to cloud environments.

Continuous integration (CI) workloads are good candidates for migration, because the ability of cloud
environments to automatically scale compute resources can help reduce the time from code
completion to built artifacts.

Continuous delivery (CD) workloads can also bene�t from running in cloud environments, which
enable easier provisioning and deployment of test environments. Migration can increase the number
of parallel build processes for unit testing. Another potential bene�t is increasing the number of test
deployments for end-to-end integration testing, and other automated testing.

Cloud-based, container-centric, CI/CD workloads typically use the following high-level process:

https://www.consul.io/
https://linkerd.io/
https://kubernetes.io/blog/2017/04/configuring-private-dns-zones-upstream-nameservers-kubernetes/


1/25/2020 Heterogeneous Deployment Patterns with Kubernetes  |  Solutions

https://cloud.google.com/solutions/heterogeneous-deployment-patterns-with-kubernetes/ 13/17

Develop. Developers commit and push code changes to local or remote-hosted source
repositories.

Build. A build service continually polls the source code repository. Upon seeing new changes,
the service starts the build process.

Unit test. The process builds source, executes unit tests, and builds a resulting container image.

Integration test. The process creates a test cluster, deploys the container image with its
associated artifacts, and executes integration tests.

Bake. Upon successful completion, container images are tagged with release version
metadata.

Deploy. Optionally, developers or admins can deploy new artifacts to production.

The CI/CD tools most commonly used with Google Cloud are Jenkins (https://jenkins.io/) and
Spinnaker (http://www.spinnaker.io/). Jenkins is a popular open source CI/CD system that can be
deployed on standalone compute instances or as a series of pods and services in Kubernetes.
Spinnaker is an open-source CD system capable of orchestrating and automating software delivery
to multiple targets. Spinnaker can leverage CI systems such as Jenkins or other tools such as Cloud
Build (/cloud-build/).

For CI/CD workloads using Jenkins with Kubernetes, refer to the following documentation that
reviews best practices, common con�guration patterns, and orchestration of continuous delivery:

Best Practices for Running Jenkins on GKE (/solutions/jenkins-on-kubernetes-engine)

Setting up Jenkins on GKE (/solutions/jenkins-on-kubernetes-engine-tutorial)

Con�guring Jenkins for GKE (/solutions/con�guring-jenkins-kubernetes-engine)

Continuous Delivery in GKE using Jenkins (/solutions/continuous-delivery-jenkins-kubernetes-engine)

Spinnaker is an open source, multi-cloud CD platform that can orchestrate software deployment
work�ows and cluster management. Spinnaker's cluster management features provide the ability to
provision and control cloud resources such as instance groups, instances, �rewalls, and load

https://jenkins.io/
http://www.spinnaker.io/
https://cloud.google.com/cloud-build/
https://cloud.google.com/solutions/jenkins-on-kubernetes-engine
https://cloud.google.com/solutions/jenkins-on-kubernetes-engine-tutorial
https://cloud.google.com/solutions/configuring-jenkins-kubernetes-engine
https://cloud.google.com/solutions/continuous-delivery-jenkins-kubernetes-engine


1/25/2020 Heterogeneous Deployment Patterns with Kubernetes  |  Solutions

https://cloud.google.com/solutions/heterogeneous-deployment-patterns-with-kubernetes/ 14/17

balancers. The software deployment work�ows consist of pipelines, each of which consists of a
sequence of actions, called stages. One stage in a Spinnaker pipeline can pass parameters to the
next stage. Pipelines can be started manually or through automatic triggers, such as external CI
systems, cron scripts, or other pipelines. Spinnaker ships with several pre-packaged stages for baking
images, deploying images, working with instance groups, and requesting user input. The following
image describes how Spinnaker pipelines release software.

Software is built and then tested. If all tests pass, an immutable image is baked and made available
in the cloud. After the image is available, it can be deployed to clusters to update their running
software.

When working with container deployments, Spinnaker leverages external CI systems such as Jenkins
or Cloud Build to execute the build, test, and bake steps. Spinnaker then orchestrates the target
deployment using standard pipeline stages. The following image shows the architecture of such a
system.



1/25/2020 Heterogeneous Deployment Patterns with Kubernetes  |  Solutions

https://cloud.google.com/solutions/heterogeneous-deployment-patterns-with-kubernetes/ 15/17

Cloud Build

For information on deploying Spinnaker on Google Cloud, see Running Spinnaker on Compute Engine
 (/solutions/spinnaker-on-compute-engine).

Jenkins works well with Spinnaker's support for triggers to start pipelines. You can use Jenkins builds
to automatically trigger Spinnaker pipelines. In a Spinnaker pipeline, Jenkins Script stages can
execute the test and bake stages of the release process. Spinnaker's built-in cluster management
stages can orchestrate the target deployment. For more information, see the Spinnaker Hello
Deployment (https://www.spinnaker.io/docs/hello-spinnaker) example.

https://cloud.google.com/solutions/spinnaker-on-compute-engine
https://www.spinnaker.io/docs/hello-spinnaker


1/25/2020 Heterogeneous Deployment Patterns with Kubernetes  |  Solutions

https://cloud.google.com/solutions/heterogeneous-deployment-patterns-with-kubernetes/ 16/17

Cloud Build is a fully-managed Google Cloud service that builds container images in a fast,
consistent, and reliable environment. Cloud Build integrates directly with Cloud Source Repositories
 (/source-repositories/) to automatically trigger builds based on changes to sources or repository tags.
Cloud Build executes builds in Docker containers and can support any custom build step that can be
packaged in a container. Builds in Cloud Build are deeply customizable, with support for step
sequencing and concurrency. State changes in the build process are automatically published to a
Pub/Sub (/pubsub/) topic.

While Spinnaker does not directly support Cloud Build, it does provide support for Container Registry
 (/container-registry/) , the container registry automatically used by Cloud Build. You can con�gure
Spinnaker to poll Container Registry and start the pipeline based on detecting updated container
image versions or tags. In such scenarios, you should con�gure Cloud Build to execute the build, test,
and bake stages of the release process. You can read about details for con�guring Spinnaker to
leverage Container Registry in the Spinnaker documentation
 (https://www.spinnaker.io/setup/install/halyard/#install-halyard-on-docker).

Spinnaker's built-in cluster management mechanisms support Kubernetes. Server Groups and Load
Balancers in Spinnaker correspond to Replica Sets and Services within Kubernetes, respectively.

The following documentation reviews the steps necessary for con�guring Spinnaker to deploy pods
and services to Kubernetes:

Kubernetes provider setup (https://www.spinnaker.io/setup/providers/kubernetes/)

Kubernetes provider reference (https://www.spinnaker.io/reference/providers/kubernetes/)

Kubernetes Source to Prod
 (https://www.spinnaker.io/guides/tutorials/codelabs/kubernetes-v2-source-to-prod/)

Learn about Cloud Interconnect (/interconnect/)

Deploy Spinnaker on Compute Engine (/solutions/spinnaker-on-compute-engine)

Try out other Google Cloud features for yourself. Have a look at our tutorials (/docs/tutorials).

https://cloud.google.com/source-repositories/
https://cloud.google.com/pubsub/
https://cloud.google.com/container-registry/
https://www.spinnaker.io/setup/install/halyard/#install-halyard-on-docker
https://www.spinnaker.io/setup/providers/kubernetes/
https://www.spinnaker.io/reference/providers/kubernetes/
https://www.spinnaker.io/guides/tutorials/codelabs/kubernetes-v2-source-to-prod/
https://cloud.google.com/interconnect/
https://cloud.google.com/solutions/spinnaker-on-compute-engine
https://cloud.google.com/docs/tutorials


1/25/2020 Heterogeneous Deployment Patterns with Kubernetes  |  Solutions

https://cloud.google.com/solutions/heterogeneous-deployment-patterns-with-kubernetes/ 17/17


