
1/25/2020 Image management best practices | Solutions | Google Cloud

https://cloud.google.com/solutions/image-management-best-practices/ 1/8

This solution provides in-depth guidance on how to manage Compute Engine images. Images
provide the base operating environment for applications that run in Compute Engine, and they are
critical to ensuring your application deploys and scales quickly and reliably. You can also use images
to archive application versions for disaster recovery or rollback scenarios.

An image (/compute/docs/images) in Compute Engine is a cloud resource that provides a reference to
an immutable disk. That disk representation is then encapsulated using a few data formats.

An image is a bundle of the raw bytes used to create a prepopulated hard disk. Written on any
formatted disk is a partition table that points to one or more partitions that contain data. For an
image to be bootable, it must contain a master boot record
 (https://wikipedia.org/wiki/Master_boot_record) and a bootable partition. For a disk to be imported as a

Compute Engine image, the disk’s bytes must be written to a �le named disk.raw.

After the complete sequence of bytes from the disk are written to the �le, the �le is archived using the
tar format (http://www.gnu.org/software/tar/manual/html_node/Standard.html) and then compressed
using the GZIP format. You can then upload the resulting *.tar.gz �le to Cloud Storage and register
it as an image in Compute Engine, as shown in the preceding diagram. After you register an image,

https://cloud.google.com/compute/docs/images
https://wikipedia.org/wiki/Master_boot_record
http://www.gnu.org/software/tar/manual/html_node/Standard.html

1/25/2020 Image management best practices | Solutions | Google Cloud

https://cloud.google.com/solutions/image-management-best-practices/ 2/8

you can use it to create exact replicas of the original disk in any region of Google Cloud. The newly
registered images are often used as boot volumes for Compute Engine instances.

For a more basic introduction to these Compute Engine terms, see Virtual machine instances
 (/compute/docs/instances/) and Images (/compute/docs/images) in the documentation.

The �rst step in using Compute Engine is to choose the image you want as the operating system for
your virtual machine (VM) instance. You can use public images supplied by Google Cloud
 (/compute/docs/images#os-compute-support), which are updated on a regular basis. Google Cloud
provides a variety of operating systems, including Debian, Ubuntu, and CentOS, for your use at no
extra cost. Some operating systems, such as Red Hat Enterprise Linux and Microsoft Windows, are
premium images, which incur additional fees for every hour that the instances run.

For more information on a particular image, such as automatic update policies, security patching,
and support channels, see the Operating system details (/compute/docs/images#os-details) section of
the product documentation.

You can use the Google Cloud public images to boot a Compute Engine instance, after which you can
customize the instance to run your application.

One approach to con�guring your instance is to use the startup script (/compute/docs/startupscript) to
run the commands that deploy your application as it boots. Keep in mind that this script runs every
time the instance boots, so you must make the script idempotent to avoid ending up in an
inconsistent or partially con�gured state. If your instances are part of a managed instance group, you
can use the Instance Group Updater to restart or rebuild your instances, which reruns your startup
script. A common practice is to use the startup script to run a con�guration management tool such
as Chef or Ansible.

https://cloud.google.com/compute/docs/instances/
https://cloud.google.com/compute/docs/images
https://cloud.google.com/compute/docs/images#os-compute-support
https://cloud.google.com/compute/docs/images#os-details
https://cloud.google.com/compute/docs/startupscript

1/25/2020 Image management best practices | Solutions | Google Cloud

https://cloud.google.com/solutions/image-management-best-practices/ 3/8

While con�guring an instance’s startup script is a viable way to provision your infrastructure, a more
e�cient method is to create a new custom image with your con�guration incorporated into the public
image. You can customize images in several ways:

Manual

Automated

Import

The process of creating a custom image is called baking.

Baking your images has the following bene�ts:

Shorter time from boot to application readiness.

Enhanced reliability for application deployments.

Easier rollback to previous versions.

Fewer dependencies on external services during application bootstrap.

Scaling up creates instances that contain identical software versions.

You can create a simple custom image by creating a new VM instance from a public image
 (/compute/docs/images#os-compute-support), con�guring the instance with the applications and
settings that you want, and then creating a custom image from that instance. Use this method if you
can con�gure your images from scratch manually rather than using automated baking
 (#automated_baking) or importing existing images (#importing_existing_images).

You can create a simple custom image using the following steps:

1. Create an instance from a public image
 (/compute/docs/instances/create-start-instance#publicimage).

2. Connect to the instance (/compute/docs/instances/connecting-to-instance).

3. Customize the instance for your needs.

4. Stop the instance (/compute/docs/instances/stopping-or-deleting-an-instance#stop_an_instance).

5. Create a custom image
 (/compute/docs/images/create-delete-deprecate-private-images#creating_a_custom_image) from the

https://cloud.google.com/compute/docs/images#os-compute-support
https://cloud.google.com/compute/docs/instances/create-start-instance#publicimage
https://cloud.google.com/compute/docs/instances/connecting-to-instance
https://cloud.google.com/compute/docs/instances/stopping-or-deleting-an-instance#stop_an_instance
https://cloud.google.com/compute/docs/images/create-delete-deprecate-private-images#creating_a_custom_image

1/25/2020 Image management best practices | Solutions | Google Cloud

https://cloud.google.com/solutions/image-management-best-practices/ 4/8

boot disk of that instance. This process requires you to delete the instance but keep the boot
disk.

Manual baking is an easy way to start if you have a small number of images, but large numbers of
images become di�cult to audit and manage. Packer (https://packer.io) is an open source tool for
making image creation more reproducible, auditable, con�gurable, and reliable. For more information
on how to create an automated image-creation pipeline, see Automated image builds with Jenkins,
Packer, and Kubernetes (/solutions/automated-build-images-with-jenkins-kubernetes). You can also use
Packer as part of a Spinnaker pipeline to produce images that are deployed to clusters of instances.

You can migrate images by exporting them from their existing infrastructure to Compute Engine. For
Linux machines, here's an in-depth guide on migrating RAW disk images, Amazon Machine Images
(AMI) and VirtualBox images (/compute/docs/images/import-existing-image).

Another option for importing your existing images is to use a paid migration service like CloudEndure
 (http://cloudendure.com). CloudEndure is a tool chain and online service that facilitates the migration

of machines from one platform to another with minimal downtime using continuous block-level
replication. With CloudEndure you can migrate your machines to Compute Engine and then use
manual baking to create images.

All disks in Compute Engine are encrypted by default using Google’s encryption keys. Images built
from disks are also encrypted. Alternatively, you can provide your own encryption keys when your
disks are created
 (/compute/docs/disks/customer-supplied-encryption#encrypt_a_new_persistent_disk_with_your_own_keys).
After you create the disk, you can create an encrypted image by providing your encryption keys to the
image create command. For more information about encryption at rest and customer-supplied
encryption keys, see Encryption at rest (/security/encryption-at-rest/) in the Google Cloud
documentation.

https://packer.io/
https://cloud.google.com/solutions/automated-build-images-with-jenkins-kubernetes
https://cloud.google.com/compute/docs/images/import-existing-image
http://cloudendure.com/
https://cloud.google.com/compute/docs/disks/customer-supplied-encryption#encrypt_a_new_persistent_disk_with_your_own_keys
https://cloud.google.com/security/encryption-at-rest/

1/25/2020 Image management best practices | Solutions | Google Cloud

https://cloud.google.com/solutions/image-management-best-practices/ 5/8

After you set up an image-build pipeline, you can use images to reliably launch instances of an
application. While the pipeline can handle creating images, you must also ensure that your
deployment mechanisms use the latest versions of the images. Finally, you need a process to curate
images, so that old and obsolete images aren't used inadvertently.

Compute Engine provides image families (/compute/docs/images#image_families) to help you ensure
that your automation systems and users run the latest images. As an administrator, you can group a
set of images that belong to the same application or use case as an image family. Then users of the
images only have to keep track of the image-family name, rather than an exact image name. Because
image names must be unique, image-build pipelines often create image names with information
encoded in them such as the application name, date, and version, for example, my-application-v3-
20161011. Rather than changing automated tools to direct consumers to the latest image by
propagating the speci�c name to other systems, you can simply reference the image family name,
which will always return the latest image in the family, for example, my-application.

To add an image to an image family, or to create an image family if one doesn't exist, you must add
an additional --family �ag to the image create step, for example:

After you run this command, any calls to run an instance based on the image my-application will
point to the newly created image, my-application-v3-20161011.

https://cloud.google.com/compute/docs/images#image_families

1/25/2020 Image management best practices | Solutions | Google Cloud

https://cloud.google.com/solutions/image-management-best-practices/ 6/8

As an administrator, you can also roll back the image
 (/compute/docs/images/create-delete-deprecate-private-images#setting_families) that the image family
points to by deprecating the image using the following command:

You can choose from various states of deprecation:

State Description

DEPRECATEDImages that are no longer the latest, but can still be launched by users. Users will see a warning at
launch that they are no longer using the most recent image.

OBSOLETE Images that should not be launched by users or automation. An attempt to create an instance from
these images will fail. You can use this image state to archive images so their data is still available
when mounted as a non-boot disk.

DELETED Images that have already been deleted or are marked for deletion in the future. These cannot be
launched, and you should delete them as soon as possible.

You can mark images for deletion or obsolescence by using the gcloud compute images deprecate
command. You can attach metadata to images to mark them for future deletion by providing one of
the --delete-in or --delete-on �ags. To attach metadata to mark images for future obsolescence,
provide the --obsolete-in or --obsolete-on �ags. You can incorporate this command into an image-
build process to enforce an image-lifecycle policy that restricts the proliferation of stale and expired
images in your project. For example, at the end of your image-build pipeline, you could include an
additional check for images that need to be deprecated or deleted and then perform those actions
explicitly.

While deprecated and deleted images are no longer shown through the API and UI by default, you can
still see them by providing the --show-deprecated �ag. To completely delete the image and its data,
you must send an explicit delete command (/sdk/gcloud/reference/compute/images/delete) for that
image.

https://cloud.google.com/compute/docs/images/create-delete-deprecate-private-images#setting_families
https://cloud.google.com/sdk/gcloud/reference/compute/images/delete

1/25/2020 Image management best practices | Solutions | Google Cloud

https://cloud.google.com/solutions/image-management-best-practices/ 7/8

Organizations often create multiple Google Cloud projects to partition their resources, environments,
and user access. Isolating resources into projects allows for granular billing, security enforcement,
and segregated networking. Although most cloud resources do not need to span multiple projects,
images are good candidates for sharing across projects. By using a shared set of images, you can
follow a common process to deliver images with best practices for security, authorization, package
management, and operations pre-con�gured for the rest of the organization.

You share images by assigning IAM roles (/compute/docs/access/iam) to an organization's projects.
The project that contains the images you want to share with other projects, referred to in the
preceding diagram as the "Image Creation Project," must have the following IAM roles and policies
applied:

1. Allow users of the "Image User Group" to create instances from these images by granting them
the compute.imageUser role.

2. Allow the "Image Creation User" to create instances in this project by granting them the
compute.instanceAdmin role.

3. Allow the "Image Creation User" to create images and disks in this project by granting them the
compute.storageAdmin role.

Projects that you want to be able to use the shared images must allow users with the
compute.imageUser role to create instances by assigning them the compute.instanceAdmin role.

For more detailed instructions on sharing images between projects, see Sharing images across
projects in the Compute Engine documentation. (/compute/docs/images/sharing-images-across-projects)

https://cloud.google.com/compute/docs/access/iam
https://cloud.google.com/compute/docs/images/sharing-images-across-projects

1/25/2020 Image management best practices | Solutions | Google Cloud

https://cloud.google.com/solutions/image-management-best-practices/ 8/8

Customizing root disks and images (/compute/docs/disks/create-root-persistent-disks)

Manually importing virtual disks (/compute/docs/images/import-existing-image)

Creating, deleting, and deprecating images
 (/compute/docs/images/create-delete-deprecate-private-images)

Sharing images across projects (/compute/docs/images/sharing-images-across-projects)

Try out other Google Cloud features for yourself. Have a look at our tutorials (/docs/tutorials).

https://cloud.google.com/compute/docs/disks/create-root-persistent-disks
https://cloud.google.com/compute/docs/images/import-existing-image
https://cloud.google.com/compute/docs/images/create-delete-deprecate-private-images
https://cloud.google.com/compute/docs/images/sharing-images-across-projects
https://cloud.google.com/docs/tutorials

