
1/25/2020 Migrating from DynamoDB to Cloud Spanner | Solutions | Google Cloud

https://cloud.google.com/solutions/migrating-dynamodb-to-cloud-spanner/ 1/21

This tutorial describes how to migrate from Amazon DynamoDB to Spanner (/spanner). It is primarily intended for app owners who want to
move from a NoSQL system to Spanner, a fully relational, fault-tolerant, highly scalable SQL database system that supports transactions. If you
have consistent Amazon DynamoDB table usage, in terms of types and layout, mapping to Spanner is straightforward. If your Amazon
DynamoDB tables contain arbitrary data types and values, it might be simpler to move to other NoSQL services, such as Datastore (/datastore/)

or Firebase (https://�rebase.google.com/).

This tutorial assumes that you are familiar with database schemas, data types, the fundamentals of NoSQL, and relational database systems.
The tutorial relies on running prede�ned tasks to perform an example migration. After the tutorial, you can modify the provided code and steps
to match your environment (#adjusting_for_your_data_model).

The following architectural diagram outlines the components used in the tutorial to migrate data:

Cloud
Pub/Sub

Cloud
Dataflow

Cloud
Storage

Cloud
Spanner

DynamoDB
Table

Change capture
(streaming)

Bulk loading
(batch)

Lambda
function

Amazon S3
bucket

Migrate data from Amazon DynamoDB to Spanner.

Create a Spanner database and migration table.

Map a NoSQL schema to a relational schema.

Create and export a sample dataset that uses Amazon DynamoDB.

Transfer data between Amazon S3 and Cloud Storage.

Use Data�ow to load data into Spanner.

This tutorial uses the following billable components of Google Cloud:

GKE

Pub/Sub

Cloud Storage

Data�ow

Spanner charges are based on the number of node-hours and the amount of data stored during the monthly billing cycle. During the tutorial,
you use a minimal con�guration of these resources, which are cleaned up at the end (#clean-up). For real-world scenarios, estimate your
throughput and storage requirements, and then use the Spanner instances documentation (/spanner/docs/instances) to determine the number of
nodes that you need.

In addition to Google Cloud resources, this tutorial uses the following Amazon Web Services (AWS) resources:

https://cloud.google.com/spanner
https://cloud.google.com/datastore/
https://firebase.google.com/
https://cloud.google.com/spanner/docs/instances

1/25/2020 Migrating from DynamoDB to Cloud Spanner | Solutions | Google Cloud

https://cloud.google.com/solutions/migrating-dynamodb-to-cloud-spanner/ 2/21



Amazon EMR

AWS Lambda

Amazon S3

Amazon DynamoDB

These services are only needed during the migration process. At the end of the tutorial, follow the instructions to clean up all resources to
prevent unnecessary charges. Use the AWS pricing calculator (https://calculator.s3.amazonaws.com/index.html) to estimate these costs.

To generate a cost estimate based on your projected usage, use the pricing calculator (/products/calculator). New Google Cloud users might be
eligible for a free trial (/free-trial).

1. Sign in (https://accounts.google.com/Login) to your Google Account.

If you don't already have one, sign up for a new account (https://accounts.google.com/SignUp).

2. In the Cloud Console, on the project selector page, select or create a Cloud project.

Note: If you don't plan to keep the resources that you create in this procedure, create a project instead of selecting an existing project. After you �nish these

steps, you can delete the project, removing all resources associated with the project.

Go to the project selector page (https://console.cloud.google.com/projectselector2/home/dashboard)

3. Make sure that billing is enabled for your Google Cloud project. Learn how to con�rm billing is enabled for your project
 (/billing/docs/how-to/modify-project).

4. Enable the Spanner, Pub/Sub, Compute Engine, and Data�ow APIs.

Enable the APIs (https://console.cloud.google.com/�ows/enableapi?apiid=spanner.googleapis.com,compute-component.googleapis.com,data�ow.googlea

When you �nish this tutorial, you can avoid continued billing by deleting the resources you created. For more information, see Cleaning up
 (#clean-up).

In this tutorial, you run commands in Cloud Shell. Cloud Shell gives you access to the command line in Google Cloud, and includes the Cloud
SDK and other tools that you need for Google Cloud development. Cloud Shell can take several minutes to initialize.

1. Activate Cloud Shell.

ACTIVATE Cloud Shell (https://console.cloud.google.com/?cloudshell=true)

2. Set the default Compute Engine zone. For example, us-central1-b.

3. Clone the GitHub repository containing the sample code.

4. Go to the cloned directory.

https://calculator.s3.amazonaws.com/index.html
https://cloud.google.com/products/calculator
https://cloud.google.com/free-trial
https://accounts.google.com/Login
https://accounts.google.com/SignUp
https://console.cloud.google.com/projectselector2/home/dashboard
https://cloud.google.com/billing/docs/how-to/modify-project
https://console.cloud.google.com/flows/enableapi?apiid=spanner.googleapis.com,compute-component.googleapis.com,dataflow.googleapis.com,pubsub.googleapis.com
https://console.cloud.google.com/?cloudshell=true

1/25/2020 Migrating from DynamoDB to Cloud Spanner | Solutions | Google Cloud

https://cloud.google.com/solutions/migrating-dynamodb-to-cloud-spanner/ 3/21



5. Create a Python virtual environment (https://virtualenv.pypa.io/en/stable/).

6. Activate the virtual environment.

7. Install the required Python modules.

In this tutorial, you create and delete Amazon DynamoDB tables, Amazon S3 buckets, and other resources. To access these resources, you �rst
need to create the required AWS Identity and Access Management (IAM) permissions. You can use a test or sandbox AWS account to avoid
affecting production resources in the same account.

In this section, you create an AWS IAM role that AWS Lambda uses at a later step in the tutorial.

1. In the AWS console, go to the IAM section, click Roles, and then select Create role.

2. Under Choose the service that will use this role, click Lambda, and then select Next:Permissions.

3. In the Policy Type box, enter AWSLambdaDynamoDBExecutionRole.

4. Select the AWSLambdaDynamoDBExecutionRole checkbox, and then click Next:Review.

5. In the Role name box, enter dynamodb-spanner-lambda-role, and then click Create role.

Follow these steps to create an AWS IAM user with programmatic access to AWS resources, which are used throughout the tutorial.

1. While you are still in the IAM section of the AWS console, click Users, and then select Add User.

2. In the User name box, enter dynamodb-spanner-migration.

3. Under Access type, click Programmatic access.

Note: Don't enable management console access, because you won't use this IAM user to sign in to the console.

4. Click Next: Permissions.

5. Click Attach existing policies directly and select the following two policies:

AmazonDynamoDBFullAccesswithDataPipeline

AmazonS3FullAccess

https://virtualenv.pypa.io/en/stable/

1/25/2020 Migrating from DynamoDB to Cloud Spanner | Solutions | Google Cloud

https://cloud.google.com/solutions/migrating-dynamodb-to-cloud-spanner/ 4/21

6. Click Next: Review, and then click Create user.

7. Click Show to view the credentials. The access key ID and secret access key are displayed for the newly created user. Leave this window
open for now because the credentials are needed in the following section. Safely store these credentials because with them, you can
make changes to your account and affect your environment. At the end of this tutorial, you can delete the IAM user (#delete_aws_resources).

1. In Cloud Shell, con�gure the AWS Command Line Interface (CLI).

The following output appears:

Enter the ACCESS KEY ID and SECRET ACCESS KEY from the AWS IAM account that you created.

In the Default region name �eld, enter us-west-2. Leave other �elds at their default values.

2. Close the AWS IAM console window.

The following section outlines the similarities and differences between data types, keys, and indexes for Amazon DynamoDB and Spanner.

Spanner uses standard SQL data types. The following table describes how Amazon DynamoDB data types
 (http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.NamingRulesDataTypes.html#HowItWorks.DataTypes) map to Spanner
data types (/spanner/docs/data-types).

Amazon DynamoDB Spanner

Number Depending on precision or intended usage, might be mapped to INT64, FLOAT64, TIMESTAMP, or DATE.

String String

Boolean BOOL

Null No explicit type. Columns can contain null values.

Binary Bytes

Sets Array

Map and List Struct if the structure is consistent and can be described by using table DDL syntax.

An Amazon DynamoDB primary key establishes uniqueness and can be either a hash key or a combination of a hash key plus a range key. This
tutorial starts by modeling the migration of a Amazon DynamoDB table whose primary key is a hash key. This hash key becomes the primary

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.NamingRulesDataTypes.html#HowItWorks.DataTypes
https://cloud.google.com/spanner/docs/data-types

1/25/2020 Migrating from DynamoDB to Cloud Spanner | Solutions | Google Cloud

https://cloud.google.com/solutions/migrating-dynamodb-to-cloud-spanner/ 5/21



key of your Spanner table. Later, in the section on interleaved tables (#interleaved_indexes), you model a situation where an Amazon DynamoDB
table uses a primary key composed of a hash key and a range key.

Both Amazon DynamoDB and Spanner support creating an index on a non-primary key attribute. Take note of any secondary indexes in your
Amazon DynamoDB table so that you can create them on your Spanner table, which is covered in a later section of this tutorial
 (#apply_secondary_indexes).

To facilitate this tutorial, you migrate the following sample table from Amazon DynamoDB to Spanner:

Amazon DynamoDB Spanner

Table
name

Migration Migration

Primary
key

"Username" : String "Username" : STRING(1024)

Key type Hash n/a

Other
�elds

Zipcode: Number Subscribed: Boolean ReminderDate: String
PointsEarned: Number

Zipcode: INT64 Subscribed: BOOL ReminderDate: DATE
PointsEarned: INT64

In the following section, you create an Amazon DynamoDB source table and populate it with data.

1. In Cloud Shell, create an Amazon DynamoDB table that uses the sample table (#sample_table) attributes.

2. Verify that the table status is ACTIVE.

3. Populate the table with sample data.

Note: If slightly fewer than the number of requested records are created, you can ignore the discrepancy. Fewer records might be created if duplicate sample

usernames were generated.

1/25/2020 Migrating from DynamoDB to Cloud Spanner | Solutions | Google Cloud

https://cloud.google.com/solutions/migrating-dynamodb-to-cloud-spanner/ 6/21

You create a single-node instance, which is appropriate for testing and the scope of this tutorial. For a production deployment, refer to the
documentation for Spanner instances (/spanner/docs/instances#node_count) to determine the appropriate node count to meet your database
performance requirements.

In this example, you create a table schema at the same time as the database. It is also possible, and common, to carry out schema updates
 (/spanner/docs/gcloud-spanner#update_databases) after you create the database.

Note: Both Amazon DynamoDB and Spanner support the use of secondary indexes. The best practices for bulk loading (/spanner/docs/bulk-loading) Spanner

recommend that you create secondary indexes after you load your initial data. You set up a secondary index (#apply_secondary_indexes) later in this tutorial.

1. Create a Spanner instance in the same region where you set the default Compute Engine zone. For example, us-central1.

2. Create a database in the Spanner instance along with the sample table.

The next sections show you how to export the Amazon DynamoDB source table and set Pub/Sub replication to capture any changes to the
database that occur while you export it. If changes to your database aren't idempotent (https://wikipedia.org/wiki/Idempotence) and it isn't safe to
write the same data more than once, it is best to carry out the following steps during a maintenance period when you can pause app changes
to the table.

You use an AWS Lambda function to stream database changes to Pub/Sub.

1. In Cloud Shell, enable Amazon DynamoDB streams on your source table.

2. Set up a Pub/Sub topic to receive the changes.

The following output appears:

https://cloud.google.com/spanner/docs/instances#node_count
https://cloud.google.com/spanner/docs/gcloud-spanner#update_databases
https://cloud.google.com/spanner/docs/bulk-loading
https://wikipedia.org/wiki/Idempotence

1/25/2020 Migrating from DynamoDB to Cloud Spanner | Solutions | Google Cloud

https://cloud.google.com/solutions/migrating-dynamodb-to-cloud-spanner/ 7/21

3. Create a Cloud IAM service account to push table updates to the Pub/Sub topic.

The following output appears:

4. Create a Cloud IAM policy binding so that the service account has permission to publish to Pub/Sub. Replace GOOGLE_CLOUD_PROJECT with
the name of your Google Cloud project.

The following output appears:

5. Create credentials for the service account.

The following output appears:

6. Prepare and package the AWS Lambda function to push Amazon DynamoDB table changes to the Pub/Sub topic.

1/25/2020 Migrating from DynamoDB to Cloud Spanner | Solutions | Google Cloud

https://cloud.google.com/solutions/migrating-dynamodb-to-cloud-spanner/ 8/21

7. Create a variable to capture the Amazon Resource Name (ARN) of the Lambda execution role that you created earlier.

8. Use the pubsub-lambda.zip package to create the AWS Lambda function.

The following output appears:

9. Create a variable to capture the ARN of the Amazon DynamoDB stream for your table.

10. Attach the Lambda function to the Amazon DynamoDB table.

11. To optimize responsiveness during testing, add --batch-size 1 to the end of the previous command, which triggers the function every
time you create, update, or delete an item.

The following output appears:

1/25/2020 Migrating from DynamoDB to Cloud Spanner | Solutions | Google Cloud

https://cloud.google.com/solutions/migrating-dynamodb-to-cloud-spanner/ 9/21

1. In Cloud Shell, create a variable for a bucket name that you use in several of the following sections.

2. Create an Amazon S3 bucket to receive the DynamoDB export.

3. In the AWS Management Console, click Data Pipeline.

4. Click Create new pipeline to de�ne the export job.

5. In the Name �eld, enter Export to Amazon S3.

6. For the Source, select the following:

Build using a template.

Export DynamoDB table to Amazon S3.

7. In the Parameters section, de�ne the following:

a. In the Source DynamoDB table name �eld, enter Migration.

b. In the Output S3 folder �eld, click the Folder icon and select the [Your-Project-ID]-dynamodb-spanner-export Amazon S3 bucket
that you just created where [YOUR-PROJECT-ID] represents your Google Cloud project ID.

c. To consume all available read-capacity during the export, in the DynamoDB read throughput ratio �eld, enter 1. In a production
environment, you adjust this value so that it doesn't hinder live operations.

d. In the Region of your DynamoDB table �eld, enter the name of the region, for example, us-west-2.

8. To start the backup jobs immediately, in the Schedule section for Run, click On pipeline activation.

9. Under Pipeline Con�guration, in the Logging �eld, enter Disabled. If you are following this guide to migrate a production table, leave this
option enabled and pointed at a separate Amazon S3 bucket for logs to help you troubleshoot errors. Leave other default parameters.

10. To begin the backup process, click Activate.

11. If you are prompted to address validation warnings, click Activate. In a production situation, you set a maximum duration for the job and
enable logging.

12. Click Refresh to update the status of the backup process. The job takes several minutes to create the resources and �nish exporting. In a
production environment, you can speed this process up by modifying the Data Pipeline jobs to use more EMR resources.

When the process �nishes, look at the output bucket.

The export job is done when there is a �le named _SUCCESS.

1/25/2020 Migrating from DynamoDB to Cloud Spanner | Solutions | Google Cloud

https://cloud.google.com/solutions/migrating-dynamodb-to-cloud-spanner/ 10/21

If you paused writes to the database before exporting, it's time to reactivate writes to the database. Now that the Pub/Sub delivery is in place,
you can push forward any table changes that occurred after the export.

1. In Cloud Shell, create a Cloud Storage bucket to receive the exported �les from Amazon S3.

2. Sync (/storage/docs/gsutil/commands/rsync) the �les from Amazon S3 into Cloud Storage. For most copy operations, the rsync command is
effective. If your export �les are large (several GBs or more), use the Cloud Storage transfer service (/storage-transfer/docs/overview) to
manage the transfer in the background.

The following output appears:

1. To write the data from the exported �les into the Spanner table, run a Data�ow job with sample Apache Beam code.

a. To watch the progress of the import job, in the Cloud Console, go to Data�ow.

GO TO Data�ow (https://console.cloud.google.com/data�ow)

b. While the job is running, you can watch the execution graph to examine the logs. Click the job that shows the Status of Running.

https://cloud.google.com/storage/docs/gsutil/commands/rsync
https://cloud.google.com/storage-transfer/docs/overview
https://console.cloud.google.com/dataflow

1/25/2020 Migrating from DynamoDB to Cloud Spanner | Solutions | Google Cloud

https://cloud.google.com/solutions/migrating-dynamodb-to-cloud-spanner/ 11/21



2. Click each stage to see how many elements have been processed. The import is complete when all stages say Succeeded. The same
number of elements that were created in your Amazon DynamoDB table display as processed at each stage.

3. Verify that the number of records in the destination Spanner table matches the number of items in the Amazon DynamoDB table.

Note: The Amazon DynamoDB item count is based on consistent table metadata and might not immediately re�ect the total number of items in the table. The

Spanner item count is based on a table query and accurately re�ects the number of rows in the database when you run the query.

The following output appears:

1/25/2020 Migrating from DynamoDB to Cloud Spanner | Solutions | Google Cloud

https://cloud.google.com/solutions/migrating-dynamodb-to-cloud-spanner/ 12/21

4. Sample random entries in each table to make sure the data is consistent.

The following output appears:

5. Query the Amazon DynamoDB table with the same Username that was returned from the Spanner query in the previous step. For example,
aallen2538. Your value is speci�c to your database.

The values of the other �elds should match those from the Spanner output. The following output appears:

When the batch import job is complete, you set up a streaming job to write ongoing updates from the source table into Spanner. You subscribe
 (/pubsub/docs/subscriber) to the events from Pub/Sub and write them to Spanner

The Lambda function you created is con�gured to capture changes to the source Amazon DynamoDB table and publish them to Pub/Sub.

1. Create a subscription to the Pub/Sub topic that AWS Lambda sends events to.

The following output appears:

https://cloud.google.com/pubsub/docs/subscriber

1/25/2020 Migrating from DynamoDB to Cloud Spanner | Solutions | Google Cloud

https://cloud.google.com/solutions/migrating-dynamodb-to-cloud-spanner/ 13/21



2. To stream the changes coming into Pub/Sub to write to the Spanner table, run the Data�ow job from Cloud Shell.

Note: To improve responsiveness during testing, you can set the Windowing (https://beam.apache.org/documentation/programming-guide/#windowing) to

5 seconds by adding --window 5 to the end of this command. The default is set to 60 seconds.

a. Similar to the batch load (#batch_import_the_data) step, to watch the progress of the job, in the Cloud Console, go to Data�ow.

GO TO Data�ow (https://console.cloud.google.com/data�ow)

b. Click the job that has the Status of Running.

The processing graph shows a similar output as before, but each processed item is counted in the status window. The system lag
time is a rough estimate of how much delay to expect before changes appear in the Spanner table.

https://beam.apache.org/documentation/programming-guide/#windowing
https://console.cloud.google.com/dataflow

1/25/2020 Migrating from DynamoDB to Cloud Spanner | Solutions | Google Cloud

https://cloud.google.com/solutions/migrating-dynamodb-to-cloud-spanner/ 14/21

The Data�ow job that you ran in the batch loading phase was a �nite set of input, also known as a bounded dataset. This Data�ow job uses
Pub/Sub as a streaming source and is considered unbounded. For more information about these two types of sources, review the section on
PCollections in the Apache Beam programming guide (https://beam.apache.org/documentation/programming-guide/#pcollections). The Data�ow job
in this step is meant to stay active, so it doesn't terminate when �nished. The streaming Data�ow job remains in the Running status, instead of
the Succeeded status.

You make some changes to the source table to verify that the changes are replicated to the Spanner table.

Note: The changes are asynchronous and might take several moments to appear in Spanner. Wait a few minutes before each step.

1. Query a nonexistent row in Spanner.

2. Create a record in Amazon DynamoDB with the same key that you used in the Spanner query. If the command runs successfully, there is
no output.

https://beam.apache.org/documentation/programming-guide/#pcollections

1/25/2020 Migrating from DynamoDB to Cloud Spanner | Solutions | Google Cloud

https://cloud.google.com/solutions/migrating-dynamodb-to-cloud-spanner/ 15/21

3. Run the original query again to verify that the row is now in Spanner.

The output shows the inserted row:

4. Change some attributes in the original item and update the Amazon DynamoDB table.

The output appears as follows:

5. Verify that the changes are propagated to the Spanner table.

The output appears as follows:

1/25/2020 Migrating from DynamoDB to Cloud Spanner | Solutions | Google Cloud

https://cloud.google.com/solutions/migrating-dynamodb-to-cloud-spanner/ 16/21

6. Delete the test item from the Amazon DynamoDB source table.

7. Verify that the corresponding row is deleted from the Spanner table. When the change is propagated, the following command returns zero
rows:

Spanner supports the concept of interleaving tables (/spanner/docs/schema-and-data-model#creating_a_hierarchy_of_interleaved_tables). This is a
design model where a top-level item has several nested items that relate to that top-level item, such as a customer and their orders, or a player
and their game scores. If your Amazon DynamoDB source table uses a primary key composed of a hash key and a range key, you can model an
interleaved table schema as shown in the following diagram. This structure lets you e�ciently query the interleaved table while joining �elds in
the parent table.

It is a best practice (/spanner/docs/bulk-loading#secondary-indexes) to apply secondary indexes to Spanner tables after you load the data. Now that
replication is working, you set up a secondary index (/spanner/docs/secondary-indexes) to speed up queries. Like Spanner tables, Spanner
secondary indexes are fully consistent. They are not eventually consistent (https://wikipedia.org/wiki/Eventual_consistency), which is common in
many NoSQL databases. This feature can help simplify your app design

Run a query that doesn't use any indexes. You are looking for the top N occurrences, given a particular column value. This is a common query in
Amazon DynamoDB for database e�ciency.

1. Go to Spanner.

https://cloud.google.com/spanner/docs/schema-and-data-model#creating_a_hierarchy_of_interleaved_tables
https://cloud.google.com/spanner/docs/bulk-loading#secondary-indexes
https://cloud.google.com/spanner/docs/secondary-indexes
https://wikipedia.org/wiki/Eventual_consistency

1/25/2020 Migrating from DynamoDB to Cloud Spanner | Solutions | Google Cloud

https://cloud.google.com/solutions/migrating-dynamodb-to-cloud-spanner/ 17/21

GO TO Spanner (https://console.cloud.google.com/spanner/instances/spanner-migration/databases/migrationdb/schema/Migration)

2. Click QUERY.

3. In the Query �eld, enter the following query, and then click Run query.

After the query runs, click Explanation and take note of the Rows scanned versus Rows returned. Without an index, Spanner scans the
entire table to return a small subset of data that matches the query.

4. If this represents a commonly occurring query, create a composite index on the Subscribed and ReminderDate columns. In the Spanner
console, click Create Index.

5. Click to turn on Edit as Text.

6. In the DDL statements, enter the index de�nition.

https://console.cloud.google.com/spanner/instances/spanner-migration/databases/migrationdb/schema/Migration

1/25/2020 Migrating from DynamoDB to Cloud Spanner | Solutions | Google Cloud

https://cloud.google.com/solutions/migrating-dynamodb-to-cloud-spanner/ 18/21

7. To begin building the database in the background, click Create.

8. After the index is created, run the query again and add the index.

Examine the query explanation again. Notice that the number of Rows scanned has decreased. The Rows returned at each step matches
the number returned by the query.

1/25/2020 Migrating from DynamoDB to Cloud Spanner | Solutions | Google Cloud

https://cloud.google.com/solutions/migrating-dynamodb-to-cloud-spanner/ 19/21

You can set up interleaved indexes in Spanner. The secondary indexes discussed in the previous section (#apply_secondary_indexes) are at the
root of the database hierarchy, and they use indexes the same way as a conventional database. An interleaved index is within the context of its
interleaved row. See index options (/spanner/docs/whitepapers/optimizing-schema-design#index_options) for more details about where to apply
interleaved indexes.

In order to adapt the migration portion of this tutorial to your own situation, modify your Apache Beam source �les. It is important that you don't
change the source schema during the actual migration window, otherwise you can lose data.

1. To parse incoming JSON and build mutations, use GSON (https://github.com/google/gson/blob/master/UserGuide.md). Adjust the JSON
de�nition to match your data.

https://cloud.google.com/spanner/docs/whitepapers/optimizing-schema-design#index_options
https://github.com/google/gson/blob/master/UserGuide.md

1/25/2020 Migrating from DynamoDB to Cloud Spanner | Solutions | Google Cloud

https://cloud.google.com/solutions/migrating-dynamodb-to-cloud-spanner/ 20/21

data�ow/src/main/java/com/example/spanner_migration/SpannerBulkWrite.java
 (https://github.com/GoogleCloudPlatform/dynamodb-spanner-
migration/blob/master/data�ow/src/main/java/com/example/spanner_migration/SpannerBulkWrite.java)

ithub.com/GoogleCloudPlatform/dynamodb-spanner-migration/blob/master/data�ow/src/main/java/com/example/spanner_migration/SpannerBulkWrite.java)

data�ow/src/main/java/com/example/spanner_migration/SpannerBulkWrite.java
 (https://github.com/GoogleCloudPlatform/dynamodb-spanner-
migration/blob/master/data�ow/src/main/java/com/example/spanner_migration/SpannerBulkWrite.java)

ithub.com/GoogleCloudPlatform/dynamodb-spanner-migration/blob/master/data�ow/src/main/java/com/example/spanner_migration/SpannerBulkWrite.java)

2. Adjust the corresponding JSON mapping.

https://github.com/GoogleCloudPlatform/dynamodb-spanner-migration/blob/master/dataflow/src/main/java/com/example/spanner_migration/SpannerBulkWrite.java
https://github.com/GoogleCloudPlatform/dynamodb-spanner-migration/blob/master/dataflow/src/main/java/com/example/spanner_migration/SpannerBulkWrite.java
https://github.com/GoogleCloudPlatform/dynamodb-spanner-migration/blob/master/dataflow/src/main/java/com/example/spanner_migration/SpannerBulkWrite.java
https://github.com/GoogleCloudPlatform/dynamodb-spanner-migration/blob/master/dataflow/src/main/java/com/example/spanner_migration/SpannerBulkWrite.java

1/25/2020 Migrating from DynamoDB to Cloud Spanner | Solutions | Google Cloud

https://cloud.google.com/solutions/migrating-dynamodb-to-cloud-spanner/ 21/21



In the previous steps, you modi�ed the Apache Beam source code for bulk import. Modify the source code for the streaming part of the pipeline
in a similar manner. Finally, adjust the table creation scripts, schemas, and indexes of your Spanner target database.

To avoid incurring charges to your Google Cloud Platform account for the resources used in this tutorial:

Caution: Deleting a project has the following effects:

Everything in the project is deleted. If you used an existing project for this tutorial, when you delete it, you also delete any other work you've done in

the project.

Custom project IDs are lost. When you created this project, you might have created a custom project ID that you want to use in the future. To preserve

the URLs that use the project ID, such as an appspot.com URL, delete selected resources inside the project instead of deleting the whole project.

1. In the Cloud Console, go to the Manage resources page.

Go to the Manage resources page (https://console.cloud.google.com/iam-admin/projects)

2. In the project list, select the project you want to delete and click Delete .

3. In the dialog, type the project ID, and then click Shut down to delete the project.

If your AWS account is used outside of this tutorial, use caution when you delete the following resources:

1. Delete the DynamoDB table (https://console.aws.amazon.com/dynamodb/home?tables:#tables:) called Migration.

2. Delete the Amazon S3 bucket (https://s3.console.aws.amazon.com/s3/home?region=us-west-2) and Lambda function
 (https://console.aws.amazon.com/lambda/home) that you created during the migration steps.

3. Finally, delete the AWS IAM (https://console.aws.amazon.com/iam/home#/users) user that you created during this tutorial.

Read about how to optimize your Spanner schema (/spanner/docs/whitepapers/optimizing-schema-design).

Learn how to use Data�ow (/data�ow/docs/how-to) for more complex situations.

Review other Spanner how-to guides (/spanner/docs/how-to).

Try out other Google Cloud features for yourself. Have a look at our tutorials (/docs/tutorials).

https://console.cloud.google.com/iam-admin/projects
https://console.aws.amazon.com/dynamodb/home?tables:#tables:
https://s3.console.aws.amazon.com/s3/home?region=us-west-2
https://console.aws.amazon.com/lambda/home
https://console.aws.amazon.com/iam/home#/users
https://cloud.google.com/spanner/docs/whitepapers/optimizing-schema-design
https://cloud.google.com/dataflow/docs/how-to
https://cloud.google.com/spanner/docs/how-to
https://cloud.google.com/docs/tutorials

