
1/25/2020 Monte Carlo methods using Dataproc and Apache Spark  |  Solutions

https://cloud.google.com/solutions/monte-carlo-methods-with-hadoop-spark 1/10

Dataproc (/dataproc) and Apache Spark  (https://spark.apache.org/) provide infrastructure and capacity that
you can use to run Monte Carlo simulations written in Java, Python, or Scala.

Monte Carlo methods can help answer a wide range of questions in business, engineering, science,
mathematics, and other �elds. By using repeated random sampling to create a probability distribution for
a variable, a Monte Carlo simulation can provide answers to questions that might otherwise be impossible
to answer. In �nance, for example, pricing an equity option requires analyzing the thousands of ways the
price of the stock could change over time. Monte Carlo methods provide a way to simulate those stock
price changes over a wide range of possible outcomes, while maintaining control over the domain of
possible inputs to the problem.

In the past, running thousands of simulations could take a very long time and accrue high costs. Dataproc
enables you to provision capacity on demand and pay for it by the minute. Apache Spark lets you use
clusters of tens, hundreds, or thousands of servers to run simulations in a way that is intuitive and scales
to meet your needs. This means that you can run more simulations more quickly, which can help your
business innovate faster and manage risk better.

Security is always important when working with �nancial data. Dataproc runs on Google Cloud, which
helps to keep your data safe, secure, and private (/security/overview) in several ways. For example, all data
is encrypted during transmission and when at rest, and Google Cloud is ISO 27001, SOC3, and PCI
compliant (/security/compliance).

Create a managed Dataproc cluster with Apache Spark pre-installed
 (/dataproc/docs/concepts/dataproc-versions#supported_cloud_dataproc_versions).

Run a Monte Carlo simulation using Python that estimates the growth of a stock portfolio over time.

Run a Monte Carlo simulation using Scala that simulates how a casino makes money.

This tutorial uses the following billable components of Google Cloud:

Compute Engine (/compute/pricing)

https://cloud.google.com/dataproc
https://spark.apache.org/
https://cloud.google.com/security/overview
https://cloud.google.com/security/compliance
https://cloud.google.com/dataproc/docs/concepts/dataproc-versions#supported_cloud_dataproc_versions
https://cloud.google.com/compute/pricing


1/25/2020 Monte Carlo methods using Dataproc and Apache Spark  |  Solutions

https://cloud.google.com/solutions/monte-carlo-methods-with-hadoop-spark 2/10



Cloud Storage (/storage/pricing)

Dataproc (/dataproc/docs/resources/pricing)

To generate a cost estimate based on your projected usage, use the pricing calculator (/products/calculator)

. New Google Cloud users might be eligible for a free trial (/free-trial).

When you �nish this tutorial, you can avoid continued billing by deleting the resources you created. For
more information, see Cleaning up (#clean-up).

Set up a Google Cloud project

1. Sign in (https://accounts.google.com/Login) to your Google Account.

If you don't already have one, sign up for a new account (https://accounts.google.com/SignUp).

2. In the Cloud Console, on the project selector page, select or create a Cloud project.

Note: If you don't plan to keep the resources that you create in this procedure, create a project instead of

selecting an existing project. After you �nish these steps, you can delete the project, removing all resources

associated with the project.

Go to the project selector page (https://console.cloud.google.com/projectselector2/home/dashboard)

3. Make sure that billing is enabled for your Google Cloud project. Learn how to con�rm billing is
enabled for your project (/billing/docs/how-to/modify-project).

4. Enable the Dataproc and Compute Engine APIs.

Enable the APIs (https://console.cloud.google.com/�ows/enableapi?apiid=dataproc,compute_component)

5. Install and initialize the Cloud SDK (/sdk/docs/).

Create a Cloud Storage bucket (/storage/docs/xml-api/put-bucket-create) in your Cloud project

1. In the Cloud Console, go to the Cloud Storage Browser page.

Go to the Cloud Storage Browser page (https://console.cloud.google.com/storage/browser)

2. Click Create bucket.

3. In the Create bucket dialog, specify the following attributes:

https://cloud.google.com/storage/pricing
https://cloud.google.com/dataproc/docs/resources/pricing
https://cloud.google.com/products/calculator
https://cloud.google.com/free-trial
https://accounts.google.com/Login
https://accounts.google.com/SignUp
https://console.cloud.google.com/projectselector2/home/dashboard
https://cloud.google.com/billing/docs/how-to/modify-project
https://console.cloud.google.com/flows/enableapi?apiid=dataproc,compute_component
https://cloud.google.com/sdk/docs/
https://cloud.google.com/storage/docs/xml-api/put-bucket-create
https://console.cloud.google.com/storage/browser


1/25/2020 Monte Carlo methods using Dataproc and Apache Spark  |  Solutions

https://cloud.google.com/solutions/monte-carlo-methods-with-hadoop-spark 3/10

A unique bucket name, subject to the bucket name requirements
 (/storage/docs/bucket-naming#requirements).

A storage class (/storage/docs/storage-classes).

A location where bucket data will be stored.

4. Click Create.

Follow the steps to create a Dataproc cluster
 (/dataproc/docs/guides/create-cluster#creating_a_cloud_dataproc_cluster) from the Google Cloud Console. The
default cluster settings, which includes two-worker nodes, is su�cient for this tutorial.

By default, Apache Spark prints verbose logging in the console window. For the purpose of this tutorial,
change the logging level to log only errors. Follow these steps:

1. In the Cloud Console, go to the VM instances page.

Go to the VM instances page (https://console.cloud.google.com/compute/instances)

2. In the list of virtual machine instances, click SSH in the row of the instance that you want to connect
to.

A browser window opens at your home directory on the primary node.

https://cloud.google.com/storage/docs/bucket-naming#requirements
https://cloud.google.com/storage/docs/storage-classes
https://cloud.google.com/dataproc/docs/guides/create-cluster#creating_a_cloud_dataproc_cluster
https://console.cloud.google.com/compute/instances


1/25/2020 Monte Carlo methods using Dataproc and Apache Spark  |  Solutions

https://cloud.google.com/solutions/monte-carlo-methods-with-hadoop-spark 4/10

1. From the primary node's home directory, edit /etc/spark/conf/log4j.properties.

2. Set log4j.rootCategory equal to ERROR.

3. Save the changes and exit the editor. If you want to enable verbose logging again, reverse the
change by restoring the value for .rootCategory to its original (INFO) value.

Spark supports Python, Scala, and Java as programming languages for standalone applications, and
provides interactive interpreters for Python and Scala. The language you choose is a matter of personal
preference. This tutorial uses the interactive interpreters because you can experiment by changing the
code, trying different input values, and then viewing the results.

In �nance, Monte Carlo methods are sometimes used to run simulations that try to predict how an
investment might perform. By producing random samples of outcomes over a range of probable market
conditions, a Monte Carlo simulation can answer questions about how a portfolio might perform on
average or in worst-case scenarios.

Follow these steps to create a simulation that uses Monte Carlo methods to try to estimate the growth of
a �nancial investment based on a few common market factors.

Note: This code is provided only as an example. Don't use this code to make investment decisions.

1. Start the Python interpreter from the Dataproc primary node.



1/25/2020 Monte Carlo methods using Dataproc and Apache Spark  |  Solutions

https://cloud.google.com/solutions/monte-carlo-methods-with-hadoop-spark 5/10

Wait for the Spark prompt >>>.

2. Enter the following code. Make sure you maintain the indentation in the function de�nition.

3. Press return until you see the Spark prompt again.

The preceding code de�nes a function that models what might happen when an investor has an
existing retirement account that is invested in the stock market, to which they add additional money
each year. The function generates a random return on the investment, as a percentage, every year
for the duration of a speci�ed term. The function takes a seed value as a parameter. This value is
used to reseed the random number generator, which ensures that the function doesn't get the same
list of random numbers each time it runs. The random.normalvariate function ensures that random
values occur across a normal distribution  (https://wikipedia.org/wiki/Normal_distribution) for the
speci�ed mean and standard deviation. The function increases the value of the portfolio by the
growth amount, which could be positive or negative, and adds a yearly sum that represents further
investment.

You de�ne the required constants in an upcoming step.

4. Create many seeds to feed to the function. At the Spark prompt, enter the following code, which
generates 10,000 seeds:

The result of the parallelize operation is a resilient distributed dataset (RDD)
 (http://spark.apache.org/docs/1.0.1/programming-guide.html#resilient-distributed-datasets-rdds), which is a

https://wikipedia.org/wiki/Normal_distribution
http://spark.apache.org/docs/1.0.1/programming-guide.html#resilient-distributed-datasets-rdds


1/25/2020 Monte Carlo methods using Dataproc and Apache Spark  |  Solutions

https://cloud.google.com/solutions/monte-carlo-methods-with-hadoop-spark 6/10

collection of elements that are optimized for parallel processing. In this case, the RDD contains
seeds that are based on the current system time.

When creating the RDD, Spark slices the data based on the number of workers and cores available.
In this case, Spark chooses to use eight slices, one slice for each core. That's �ne for this simulation,
which has 10,000 items of data. For larger simulations, each slice might be larger than the default
limit. In that case, specifying a second parameter to parallelize can increase the number slices,
which can help to keep the size of each slice manageable, while Spark still takes advantage of all
eight cores.

5. Feed the RDD that contains the seeds to the growth function.

The map method passes each seed in the RDD to the grow function and appends each result to a new
RDD, which is stored in results. Note that this operation, which performs a transformation, doesn't
produce its results right away. Spark won't do this work until the results are needed. This lazy
evaluation is why you can enter code without the constants being de�ned.

6. Specify some values for the function.

7. Call reduce to aggregate the values in the RDD. Enter the following code to sum the results in the
RDD:

8. Estimate and display the average return:

Be sure to include the dot (.) character at the end. It signi�es �oating-point arithmetic.

9. Now change an assumption and see how the results change. For example, you can enter a new
value for the market's average return:



1/25/2020 Monte Carlo methods using Dataproc and Apache Spark  |  Solutions

https://cloud.google.com/solutions/monte-carlo-methods-with-hadoop-spark 7/10

10. Run the simulation again.

11. When you're done experimenting, press CTRL+D to exit the Python interpreter.

Monte Carlo, of course, is famous as a gambling destination. In this section, you use Scala to create a
simulation that models the mathematical advantage that a casino enjoys in a game of chance. The
"house edge" at a real casino varies widely from game to game; it can be over 20% in keno
 (https://wikipedia.org/wiki/Keno), for example. This tutorial creates a simple game where the house has only

a one-percent advantage. Here's how the game works:

The player places a bet, consisting of a number of chips from a bankroll fund.

The player rolls a 100-sided die (how cool would that be?).

If the result of the roll is a number from 1 to 49, the player wins.

For results 50 to 100, the player loses the bet.

You can see that this game creates a one-percent disadvantage for the player: in 51 of the 100 possible
outcomes for each roll, the player loses.

Follow these steps to create and run the game:

1. Start the Scala interpreter from the Dataproc primary node.

2. Copy and paste the following code to create the game. Scala doesn't have the same requirements as
Python when it comes to indentation, so you can simply copy and paste this code at the scala>
prompt.

https://wikipedia.org/wiki/Keno


1/25/2020 Monte Carlo methods using Dataproc and Apache Spark  |  Solutions

https://cloud.google.com/solutions/monte-carlo-methods-with-hadoop-spark 8/10

3. Press return until you see the scala> prompt.



1/25/2020 Monte Carlo methods using Dataproc and Apache Spark  |  Solutions

https://cloud.google.com/solutions/monte-carlo-methods-with-hadoop-spark 9/10

4. Enter the following code to play the game 25 times, which is the default value for NUMBER_OF_GAMES.

Your bankroll started with a value of 10 units. Is it higher or lower, now?

5. Now simulate 10,000 players betting 100 chips per game. Play 10,000 games in a session. This
Monte Carlo simulation calculates the probability of losing all your money before the end of the
session. Enter the follow code:

Note that the syntax .reduce(_+_) is shorthand in Scala for aggregating by using a summing
function. It is functionally equivalent to the .reduce(add) syntax that you saw in the Python
example.

The preceding code performs the following steps:

Creates an RDD with the results of playing the session.

Replaces bankrupt players' results with the number 1 and nonzero results with the number 0.

Sums the count of bankrupt players.

Divides the count by the number of players.

A typical result might be:

Which represents a near guarantee of losing all your money, even though the casino had only a one-
percent advantage.

To avoid incurring charges to your Google Cloud Platform account for the resources used in this tutorial:



1/25/2020 Monte Carlo methods using Dataproc and Apache Spark  |  Solutions

https://cloud.google.com/solutions/monte-carlo-methods-with-hadoop-spark 10/10

 Caution: Deleting a project has the following effects:

Everything in the project is deleted. If you used an existing project for this tutorial, when you delete it, you

also delete any other work you've done in the project.

Custom project IDs are lost. When you created this project, you might have created a custom project ID that

you want to use in the future. To preserve the URLs that use the project ID, such as an appspot.com URL,

delete selected resources inside the project instead of deleting the whole project.

1. In the Cloud Console, go to the Manage resources page.

Go to the Manage resources page (https://console.cloud.google.com/iam-admin/projects)

2. In the project list, select the project you want to delete and click Delete .

3. In the dialog, type the project ID, and then click Shut down to delete the project.

For more on submitting Spark jobs to Dataproc without having to use ssh to connect to the cluster,
read Dataproc—Submit a job (/dataproc/docs/guides/submit-job)

Try out other Google Cloud features for yourself. Have a look at our tutorials (/docs/tutorials).

https://console.cloud.google.com/iam-admin/projects
https://cloud.google.com/dataproc/docs/guides/submit-job
https://cloud.google.com/docs/tutorials

