
1/25/2020 Using OpenTSDB to Monitor Time-Series Data | Solutions | Google Cloud

https://cloud.google.com/solutions/opentsdb-cloud-platform 1/14

Solutions Solutions

This tutorial describes how to collect, record, and monitor time-series data
 (https://wikipedia.org/wiki/Time_series) on Google Cloud using OpenTSDB (http://opentsdb.net/)

running on Google Kubernetes Engine (GKE) (https://cloud.google.com/kubernetes-engine/) and
Bigtable (https://cloud.google.com/bigtable/).

Time-series data is a highly valuable asset that you can use for several apps, including
trending, monitoring, and machine learning. You can generate time-series data from server
infrastructure, app code, and other sources. OpenTSDB can collect and retain large amounts
of time-series data with a high degree of granularity.

This tutorial details how to create a scalable data collection layer using GKE and work with
the collected data using Bigtable. The following diagram illustrates the high-level architecture
of the solution:

 (https://cloud.google.com/solutions/)

Using OpenTSDB to Monitor Time-Series Data

https://cloud.google.com/solutions/
https://cloud.google.com/solutions/
https://wikipedia.org/wiki/Time_series
http://opentsdb.net/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/bigtable/

1/25/2020 Using OpenTSDB to Monitor Time-Series Data | Solutions | Google Cloud

https://cloud.google.com/solutions/opentsdb-cloud-platform 2/14

Google Cloud Platform

Time-Series Sources

Data Storage LayerData Collection LayerCPU Load

Kubernetes
Engine

OpenTSDB

Cloud Bigtable

Time-Series data

Other Time-Series
Measurements

IoT Measurements

Objectives

Create a new Bigtable instance.

Create a new GKE cluster.

Deploy OpenTSDB to your GKE cluster.

Send time-series metrics to OpenTSDB.

Visualize metrics using OpenTSDB and Grafana (https://grafana.com/).

Costs

This tutorial uses billable components of Google Cloud, including:

Compute Engine

GKE

Bigtable

Cloud Storage

https://grafana.com/

1/25/2020 Using OpenTSDB to Monitor Time-Series Data | Solutions | Google Cloud

https://cloud.google.com/solutions/opentsdb-cloud-platform 3/14

Use the Pricing Calculator (https://cloud.google.com/products/calculator/) to generate a cost
estimate based on your projected usage.

New Google Cloud users might be eligible for a free trial (https://cloud.google.com/free-trial).

Before you begin

1. Sign in (https://accounts.google.com/Login) to your Google Account.

If you don't already have one, sign up for a new account
 (https://accounts.google.com/SignUp).

2. In the Cloud Console, on the project selector page, select or create a Cloud project.

Note: If you don't plan to keep the resources that you create in this procedure, create a project instead

of selecting an existing project. After you �nish these steps, you can delete the project, removing all

resources associated with the project.

GO TO THE PROJECT SELECTOR PAGE (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/PROJECTSELECT

3. Make sure that billing is enabled for your Google Cloud project. Learn how to con�rm
billing is enabled for your project (https://cloud.google.com/billing/docs/how-to/modify-project).

4. Enable the Bigtable, Bigtable Admin, Compute Engine, and Google Kubernetes Engine
APIs.

ENABLE THE APIS (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/FLOWS/ENABLEAPI?APIID=BIGTABLE,

Make note of the Project ID (https://console.cloud.google.com/home/dashboard) for use in a later
step.

Preparing your environment

You will use Cloud Shell (https://cloud.google.com/shell/docs/overview) to enter commands in this
tutorial. Cloud Shell gives you access to the command line in Cloud Console, and includes
Cloud SDK and other tools you need for Google Cloud development. Cloud Shell appears as a
window at the bottom of Cloud Console. It can take several minutes to initialize, but the window
appears immediately.

https://cloud.google.com/products/calculator/
https://cloud.google.com/free-trial
https://accounts.google.com/Login
https://accounts.google.com/SignUp
https://console.cloud.google.com/projectselector2/home/dashboard
https://cloud.google.com/billing/docs/how-to/modify-project
https://console.cloud.google.com/flows/enableapi?apiid=bigtable,bigtableadmin.googleapis.com,compute.googleapis.com,container.googleapis.com
https://console.cloud.google.com/home/dashboard
https://cloud.google.com/shell/docs/overview

1/25/2020 Using OpenTSDB to Monitor Time-Series Data | Solutions | Google Cloud

https://cloud.google.com/solutions/opentsdb-cloud-platform 4/14

1. Activate Cloud Shell.

ACTIVATE CLOUD SHELL (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/?CLOUDSHELL=TRUE)

Note: As an alternative to Cloud Shell, which comes with the Cloud SDK pre-installed, you can choose

to install Cloud SDK on your local workstation (https://cloud.google.com/sdk/) and continue working

from there. If you use your local environment, you will need to alter a few of the instructions in this

tutorial.

2. Set the default Compute Engine zone to the zone where you are going to create your
Bigtable cluster, for example us-central1-f.

3. Clone the git repository containing the sample code.

4. Navigate to the sample code directory.

Creating a Bigtable instance

This tutorial uses Bigtable to store the time-series data that you collect. You must create a
Bigtable instance to do that work.

Bigtable is a key/wide-column store that works especially well for time-series data, as is
explained in Bigtable Schema Design for Time Series Data
 (https://cloud.google.com/bigtable/docs/schema-design-time-series). Bigtable supports the HBase API,
which makes it easy for you to use software designed to work with Apache HBase
 (https://hbase.apache.org/), such as OpenTSDB. You can learn about the HBase schema used by
OpenTSDB in the OpenTSDB documentation
 (http://opentsdb.net/docs/build/html/user_guide/backends/hbase.html).

A key component of OpenTSDB is the AsyncHBase (https://github.com/OpenTSDB/asynchbase)

client, which enables it to bulk-write to HBase in a fully asynchronous, non-blocking, thread-safe

gcloud config set compute/zone us-central1-f  

git clone https://github.com/GoogleCloudPlatform/opentsdb-bigtable.git  

cd opentsdb-bigtable  

https://console.cloud.google.com/?cloudshell=true
https://cloud.google.com/sdk/
https://cloud.google.com/bigtable/docs/schema-design-time-series
https://hbase.apache.org/
http://opentsdb.net/docs/build/html/user_guide/backends/hbase.html
https://github.com/OpenTSDB/asynchbase

1/25/2020 Using OpenTSDB to Monitor Time-Series Data | Solutions | Google Cloud

https://cloud.google.com/solutions/opentsdb-cloud-platform 5/14

manner. When you use OpenTSDB with Bigtable, AsyncHBase is implemented as the
AsyncBigtable (https://github.com/OpenTSDB/asyncbigtable) client.

The ability to easily scale to meet your needs is a key feature of Bigtable. This tutorial uses a
single-node development cluster, because it is su�cient for the task and is economical. Start
your projects in a development cluster and move to a larger production cluster when you are
ready to work with production data. The Bigtable documentation includes detailed discussion
about performance and scaling (https://cloud.google.com/bigtable/docs/performance) to help you
pick a cluster size for your own work.

Follow these steps to create your Bigtable instance:

1. Go to the Create Instance page in the Cloud Console.

GO TO THE CREATE INSTANCE PAGE (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/BIGTABLE/CREATE-

2. Enter a name for your instance in the Instance name box. You can use OpenTSDB
instance or another name of your choosing. The page automatically sets Instance ID and
Cluster ID after you enter your instance name.

3. Set Instance type to Development.

4. In Zone, select us-central1-f or the zone from which you are going to run OpenTSDB.

5. Click Create to create the instance.

Make note of the values of Instance ID and Zone. You will use them in a later step.

Creating a GKE cluster

GKE provides a managed Kubernetes (https://kubernetes.io/) environment. After you create a GKE
cluster, you can deploy Kubernetes pods (https://kubernetes.io/docs/concepts/workloads/pods/pod/)

to it. This tutorial uses GKE and Kubernetes pods to run OpenTSDB.

OpenTSDB separates its storage from its application layer, which enables it to be deployed
across multiple instances simultaneously. By running in parallel, it can handle a large amount
of time-series data. Packaging OpenTSDB into a Docker container enables easy deployment at
scale using GKE.

Create a Kubernetes cluster by running the following command. This operation can take a few
minutes to complete:

https://github.com/OpenTSDB/asyncbigtable
https://cloud.google.com/bigtable/docs/performance
https://console.cloud.google.com/bigtable/create-instance
https://kubernetes.io/
https://kubernetes.io/docs/concepts/workloads/pods/pod/

1/25/2020 Using OpenTSDB to Monitor Time-Series Data | Solutions | Google Cloud

https://cloud.google.com/solutions/opentsdb-cloud-platform 6/14

Adding the two extra scopes to your GKE cluster allows your OpenTSDB container to interact
with Bigtable. You can pull images (https://cloud.google.com/container-registry/docs/access-control)

from Google Container Registry (https://cloud.google.com/container-registry/) without adding a
scope for Cloud Storage, because the cluster can read from Cloud Storage by default. You
might need additional scopes (https://developers.google.com/identity/protocols/googlescopes) in
other deployments.

The rest of this tutorial uses a prebuilt container, gcr.io/cloud-solutions-images/opentsdb-
bigtable:v1 located in Container Registry (https://cloud.google.com/container-registry/). The
Docker�le (https://github.com/GoogleCloudPlatform/opentsdb-bigtable/blob/master/build/Docker�le)

and ENTRYPOINT
 (https://github.com/GoogleCloudPlatform/opentsdb-bigtable/blob/master/build/docker-entrypoint.sh)

script used to build the container are located in the build folder of the tutorial repository.

Creating a Con�gMap with con�guration details

Kubernetes provides a mechanism called the Con�gMap
 (https://kubernetes.io/docs/tasks/con�gure-pod-container/con�gure-pod-con�gmap/) to separate
con�guration details from the container image to make apps more portable. The con�guration
for OpenTSDB is speci�ed in opentsdb.conf. A Con�gMap containing opentsdb.conf is
included with the sample code. You must edit it to re�ect your instance details.

Create the Con�gMap

Edit the OpenTSDB con�guration to use the project name, instance identi�er, and zone that you
used when creating your instance.

1. To open the code editor built into Cloud Shell, click the pencil icon in the toolbar at the top
of the Cloud Shell window.

2. Select opentsdb-config.yaml under opentsdb/configmaps to open it in the editor.

3. Replace the placeholder text with the project name, instance identi�er, and zone you set
earlier in the tutorial.

gcloud container clusters create opentsdb-cluster --scopes \
"https://www.googleapis.com/auth/bigtable.admin",\
"https://www.googleapis.com/auth/bigtable.data"

 

https://cloud.google.com/container-registry/docs/access-control
https://cloud.google.com/container-registry/
https://developers.google.com/identity/protocols/googlescopes
https://cloud.google.com/container-registry/
https://github.com/GoogleCloudPlatform/opentsdb-bigtable/blob/master/build/Dockerfile
https://github.com/GoogleCloudPlatform/opentsdb-bigtable/blob/master/build/docker-entrypoint.sh
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/

1/25/2020 Using OpenTSDB to Monitor Time-Series Data | Solutions | Google Cloud

https://cloud.google.com/solutions/opentsdb-cloud-platform 7/14

4. From the Cloud Shell prompt, create a Con�gMap from the updated opentsdb-
config.yaml:

Note: OpenTSDB offers you a variety of con�guration options

 (http://opentsdb.net/docs/build/html/user_guide/con�guration.html). To change your con�guration,

modify the opentsdb.conf Con�gMap and apply

 (https://kubernetes.io/docs/concepts/cluster-administration/manage-deployment/#kubectl-apply) it to

push the changes to the cluster. Some changes require you to restart processes.

Creating OpenTSDB tables in Bigtable

Before you can read or write data using OpenTSDB, you need to create the necessary tables
 (http://opentsdb.net/docs/build/html/installation.html#create-tables) in Bigtable to store that data.
Follow these steps to create a Kubernetes job
 (https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/) that creates the
tables.

1. Launch the job:

2. The job can take up to a minute or more to complete. Verify the job has completed
successfully by periodically running this command:

The output should indicate that one job has succeeded under the heading Pods Statuses.

3. Get the table creation job logs by running the following commands:

kubectl create -f configmaps/opentsdb-config.yaml  

kubectl create -f jobs/opentsdb-init.yaml  

kubectl describe jobs  

pods=$(kubectl get pods --show-all --selector=job-name=opentsdb-init \
--output=jsonpath={.items..metadata.name})

kubectl logs $pods

 

http://opentsdb.net/docs/build/html/user_guide/configuration.html
https://kubernetes.io/docs/concepts/cluster-administration/manage-deployment/#kubectl-apply
http://opentsdb.net/docs/build/html/installation.html#create-tables
https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/

1/25/2020 Using OpenTSDB to Monitor Time-Series Data | Solutions | Google Cloud

https://cloud.google.com/solutions/opentsdb-cloud-platform 8/14

When you get the logs, examine the bottom of the output, which should indicate each table that
was created. This job runs several table creation commands, each taking the form of create
'TABLE_NAME'. Look for a line of the form 0 row(s) in 0.0000 seconds, where the actual
command duration is listed instead of 0.0000.

Your output should include a section that looks something like the following:

You only need to run this job once. It returns an error message if the tables already exist. You
can continue the tutorial using existing tables, if present.

Note: Bigtable automatically performs data compression

 (https://cloud.google.com/bigtable/docs/overview#data_compression), so it disables user-con�gurable

compression at an HBase level.

Data Model

create 'tsdb-uid',
 {NAME => 'id', COMPRESSION => 'NONE', BLOOMFILTER => 'ROW'},
 {NAME => 'name', COMPRESSION => 'NONE', BLOOMFILTER => 'ROW'}
0 row(s) in 1.3680 seconds

Hbase::Table - tsdb-uid

create 'tsdb',
 {NAME => 't', VERSIONS => 1, COMPRESSION => 'NONE', BLOOMFILTER => 'ROW'}
0 row(s) in 0.6570 seconds

Hbase::Table - tsdb

create 'tsdb-tree',
 {NAME => 't', VERSIONS => 1, COMPRESSION => 'NONE', BLOOMFILTER => 'ROW'}
0 row(s) in 0.2670 seconds

Hbase::Table - tsdb-tree

create 'tsdb-meta',
 {NAME => 'name', COMPRESSION => 'NONE', BLOOMFILTER => 'ROW'}
0 row(s) in 0.5850 seconds

Hbase::Table - tsdb-meta

 

https://cloud.google.com/bigtable/docs/overview#data_compression

1/25/2020 Using OpenTSDB to Monitor Time-Series Data | Solutions | Google Cloud

https://cloud.google.com/solutions/opentsdb-cloud-platform 9/14

The tables you just created will store data points from OpenTSDB. In a later step, you will write
time-series data into these tables. Time-series data points are organized and stored as follows:

Field Required Description Example

metric Required Item that is being measured - the default key sys.cpu.user

timestamp Required Epoch time of the measurement 1497561091

value Required Measurement value 89.3

tags At least one tag is required Quali�es the measurement for querying purposes hostname=www

cpu=0

env=prod

Deploying OpenTSDB

The rest of this tutorial provides instructions for making the sample scenario work. The
following diagram shows the architecture you will use:

Diagram of the architecture used in this tutorial to write, read, and visualize time-series data.

This tutorial uses two Kubernetes deployments
 (https://kubernetes.io/docs/concepts/workloads/controllers/deployment/). One deployment sends
metrics into OpenTSDB and the other reads from it. Using two deployments prevents long-
running reads and writes from blocking each other. The pods in each deployment use the same
container. OpenTSDB provides a daemon called tsd
 (http://opentsdb.net/docs/build/html/user_guide/cli/tsd.html) that runs in each container.

A single tsd process can handle a high throughput of events every second. To distribute load,
each deployment in this tutorial creates 3 replicas of the read and write pods.

Create a deployment for writing metrics

The con�guration information for the writer deployment is in opentsdb-write.yaml in the
deployments folder of the tutorial repository. Use the following command to create it:

kubectl create -f deployments/opentsdb-write.yaml  

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
http://opentsdb.net/docs/build/html/user_guide/cli/tsd.html

1/25/2020 Using OpenTSDB to Monitor Time-Series Data | Solutions | Google Cloud

https://cloud.google.com/solutions/opentsdb-cloud-platform 10/14

Create a deployment for reading metrics

The con�guration information for the reader deployment is in opentsdb-read.yaml in the
deployments folder of the tutorial repository. Use the following command to create it:

In a production deployment, you can increase the number of tsd pods running manually or by
using autoscaling
 (https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale-walkthrough/) in
Kubernetes. Similarly, you can increase the number of instances in your GKE cluster manually
or by using Cluster Autoscaler (https://cloud.google.com/kubernetes-engine/docs/cluster-autoscaler).

Creating OpenTSDB services

In order to provide consistent network connectivity to the deployments, you will create two
Kubernetes services (https://kubernetes.io/docs/concepts/services-networking/service/). One service
writes metrics into OpenTSDB and the other reads.

Create the service for writing metrics

The con�guration information for the metrics writing service is contained in opentsdb-
write.yaml in the services folder of the tutorial repository. Use the following command to
create the service:

This service is created inside your GKE cluster and is accessible to other services running in
your cluster. In the next section of this tutorial, you write metrics to this service.

Note: You can expose the service to the rest of your network by using an internal load balancer
 (https://cloud.google.com/solutions/prep-kubernetes-engine-for-
prod#connecting_to_a_cluster_from_inside_gcp)

or you can expose it to the internet

kubectl create -f deployments/opentsdb-read.yaml  

kubectl create -f services/opentsdb-write.yaml  

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale-walkthrough/
https://cloud.google.com/kubernetes-engine/docs/cluster-autoscaler
https://kubernetes.io/docs/concepts/services-networking/service/
https://cloud.google.com/solutions/prep-kubernetes-engine-for-prod#connecting_to_a_cluster_from_inside_gcp
https://cloud.google.com/solutions/prep-kubernetes-engine-for-prod#connecting_from_inside_a_cluster_to_external_services

1/25/2020 Using OpenTSDB to Monitor Time-Series Data | Solutions | Google Cloud

https://cloud.google.com/solutions/opentsdb-cloud-platform 11/14

 (https://cloud.google.com/solutions/prep-kubernetes-engine-for-
prod#connecting_from_inside_a_cluster_to_external_services)

by adding a LoadBalancer

 (https://kubernetes.io/docs/tasks/access-application-cluster/create-external-load-balancer/) in the service

de�nition.

Create the service for reading metrics

The con�guration information for the metrics reading service is contained in opentsdb-
read.yaml in the services folder of the tutorial repository. Use the following command to create
the service:

Writing time-series data to OpenTSDB

There are several mechanisms to write data
 (http://opentsdb.net/docs/build/html/user_guide/writing/index.html) into OpenTSDB. After you de�ne
service endpoints, you can direct processes to begin writing data to them. This tutorial uses
Heapster (https://github.com/kubernetes/heapster) to demonstrate writing data. Your Heapster
deployment collects data about GKE and publishes metrics from the GKE cluster on which you
are running OpenTSDB.

Use the following command to deploy Heapster to your cluster:

Examining time-series data with OpenTSDB

You can query time-series metrics by using the opentsdb-read service endpoint that you
deployed earlier in the tutorial. You can use the data in a variety of ways. One common option
is to visualize it. OpenTSDB includes a basic interface to visualize metrics that it collects. This
tutorial uses Grafana (https://grafana.com/), a popular alternative for visualizing metrics that
provides additional functionality.

kubectl create -f services/opentsdb-read.yaml  

kubectl create -f deployments/heapster.yaml  

https://cloud.google.com/solutions/prep-kubernetes-engine-for-prod#connecting_from_inside_a_cluster_to_external_services
https://kubernetes.io/docs/tasks/access-application-cluster/create-external-load-balancer/
http://opentsdb.net/docs/build/html/user_guide/writing/index.html
https://github.com/kubernetes/heapster
https://grafana.com/

1/25/2020 Using OpenTSDB to Monitor Time-Series Data | Solutions | Google Cloud

https://cloud.google.com/solutions/opentsdb-cloud-platform 12/14

Set up Grafana

Running Grafana in your cluster requires a similar process to that you used to set up
OpenTSDB. In addition to creating a Con�gMap and a deployment, you need to con�gure port
forwarding
 (https://kubernetes.io/docs/tasks/access-application-cluster/port-forward-access-application-cluster/) so
that you can access Grafana while it is running in your GKE cluster.

Use the following steps to set up Grafana

1. Create the Grafana ConfigMap using the con�guration information in grafana.yaml in the
configmaps folder of the tutorial repository.

2. Create the Grafana deployment using the con�guration information in grafana.yaml in
the deployments folder of the tutorial repository.

3. Get the name of the Grafana pod in the cluster and use it to set up port forwarding.

4. Verify that forwarding was successful. The output should match the following:

Connect to the Grafana web inte�ace

In Cloud Shell, click Web Preview (https://cloud.google.com/shell/docs/using-web-preview) and then
select Preview on port 8080.

A new browser tab opens and connects to the Grafana web interface. After a few moments, the
browser displays graphs like the following:

kubectl create -f configmaps/grafana.yaml  

kubectl create -f deployments/grafana.yaml  

grafana=$(kubectl get pods --show-all --selector=app=grafana \
 --output=jsonpath={.items..metadata.name})

kubectl port-forward $grafana 8080:3000

 

Forwarding from 127.0.0.1:8080 -> 3000
Forwarding from [::1]:8080 -> 3000

 

https://kubernetes.io/docs/tasks/access-application-cluster/port-forward-access-application-cluster/
https://cloud.google.com/shell/docs/using-web-preview

1/25/2020 Using OpenTSDB to Monitor Time-Series Data | Solutions | Google Cloud

https://cloud.google.com/solutions/opentsdb-cloud-platform 13/14

This deployment of Grafana has been customized for this tutorial. The �les
configmaps/grafana.yaml and deployments/grafana.yaml con�gure Grafana to connect to the
opentsdb-read service, allow anonymous authentication, and display some basic cluster
metrics. A deployment of Grafana in production would implement the proper authentication
mechanisms and use richer time-series graphs.

Cleaning up

To avoid incurring charges to your Google Cloud Platform account for the resources used in
this tutorial:

1. Delete the GKE cluster to terminate all the artifacts previously created with the kubectl
create command:

To delete the GKE cluster, con�rm by typing Y or pressing Enter.

2. To delete the Bigtable cluster, click Products & services in Google Cloud Console. Click
Bigtable, select the cluster that you created earlier, and click Delete.

What's next

gcloud container clusters delete opentsdb-cluster  

1/25/2020 Using OpenTSDB to Monitor Time-Series Data | Solutions | Google Cloud

https://cloud.google.com/solutions/opentsdb-cloud-platform 14/14

To learn how to improve the performance of your uses of OpenTSDB, consult Bigtable
Schema Design for Time Series Data
 (https://cloud.google.com/bigtable/docs/schema-design-time-series).

The video Bigtable in Action (https://www.youtube.com/watch?v=KaRbKdMInuc#t=37m15s)

from Google Cloud Next 17 describes �eld promotion and other performance
considerations.

The documentation on cluster scopes
 (https://cloud.google.com/sdk/gcloud/reference/container/clusters/create#--scopes) for GKE
clusters describes default scopes, such as Cloud Storage, and scopes you can add for
other Google services.

Try out other Google Cloud Platform features for yourself. Have a look at our tutorials
 (https://cloud.google.com/docs/tutorials).

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License
 (https://creativecommons.org/licenses/by/4.0/), and code samples are licensed under the Apache 2.0 License
 (https://www.apache.org/licenses/LICENSE-2.0). For details, see our Site Policies
 (https://developers.google.com/terms/site-policies). Java is a registered trademark of Oracle and/or its a�liates.

Last updated November 19, 2019.

Bigtable in action (Google Bigtable in action (Google ……

https://cloud.google.com/bigtable/docs/schema-design-time-series
https://www.youtube.com/watch?v=KaRbKdMInuc#t=37m15s
https://cloud.google.com/sdk/gcloud/reference/container/clusters/create#--scopes
https://cloud.google.com/docs/tutorials
https://creativecommons.org/licenses/by/4.0/
https://www.apache.org/licenses/LICENSE-2.0
https://developers.google.com/terms/site-policies
https://www.youtube.com/watch?v=KaRbKdMInuc

