
1/25/2020 Patterns for scalable and resilient apps | Solutions | Google Cloud

https://cloud.google.com/solutions/scalable-and-resilient-apps 1/24

Solutions Solutions

This document introduces some patterns and practices for creating apps that are resilient and
scalable, two essential goals of many modern architecture exercises. A well-designed app
scales up and down as demand increases and decreases, and is resilient enough to withstand
service disruptions. Building and operating apps that meet these requirements requires careful
planning and design.

Scalability: Adjusting capacity to meet demand

Scalability (https://wikipedia.org/wiki/Scalability) is the measure of a system's ability to handle
varying amounts of work by adding or removing resources from the system. For example, a
scalable web app is one that works well with one user or many users, and that gracefully
handles peaks and dips in tra�c.

The �exibility to adjust the resources consumed by an app is a key business driver for moving
to the cloud. With proper design, you can reduce costs by removing under-utilized resources
without compromising performance or user experience. You can similarly maintain a good user
experience during periods of high tra�c by adding more resources. In this way, your app can
consume only the resources necessary to meet demand.

Google Cloud provides products and features to help you build scalable, e�cient apps:

Compute Engine (https://cloud.google.com/compute/) virtual machines and Google
Kubernetes Engine (GKE) (https://cloud.google.com/kubernetes-engine/) clusters integrate with
autoscalers that let you grow or shrink resource consumption based on metrics that you
de�ne.

 (https://cloud.google.com/solutions/)

Pa�erns for scalable and resilient apps

https://cloud.google.com/solutions/
https://cloud.google.com/solutions/
https://wikipedia.org/wiki/Scalability
https://cloud.google.com/compute/
https://cloud.google.com/kubernetes-engine/

1/25/2020 Patterns for scalable and resilient apps | Solutions | Google Cloud

https://cloud.google.com/solutions/scalable-and-resilient-apps 2/24

Google Cloud's serverless platform (https://cloud.google.com/serverless/) provides managed
compute, database, and other services that scale quickly from zero to high request
volumes, and you pay only for what you use.

Database products like BigQuery (https://cloud.google.com/bigquery/), Cloud Spanner
 (https://cloud.google.com/spanner/), and Cloud Bigtable (https://cloud.google.com/bigtable) can
deliver consistent performance across massive data sizes.

Stackdriver Monitoring (https://cloud.google.com/monitoring/) provides metrics across your
apps and infrastructure, helping you make data-driven scaling decisions.

Resilience: Designing to withstand failures

A resilient app is one that continues to function despite failures of system components.
Resilience requires planning at all levels of your architecture. It in�uences how you lay out your
infrastructure and network and how you design your app and data storage. Resilience also
extends to people and culture.

Building and operating resilient apps is hard. This is especially true for distributed apps, which
might contain multiple layers of infrastructure, networks, and services. Mistakes and outages
happen, and improving the resilience of your app is an ongoing journey. With careful planning,
you can improve the ability of your app to withstand failures. With proper processes and
organizational culture, you can also learn from failures to further increase your app's resilience.

Google Cloud provides tools and services to help you build highly available and resilient apps:

Google Cloud services are available in regions and zones
 (https://cloud.google.com/docs/geography-and-regions#regions_and_zones) across the globe,
enabling you to deploy your app to best meet your availability goals.

Compute Engine instance groups and GKE clusters can be distributed and managed
across the available zones in a region.

Compute Engine regional persistent disks
 (https://cloud.google.com/compute/docs/disks/#repds) are synchronously replicated across
zones in a region.

Google Cloud provides a range of load-balancing options
 (https://cloud.google.com/load-balancing/) to manage your app tra�c, including global load
balancing that can direct tra�c to a healthy region closest to your users.

https://cloud.google.com/serverless/
https://cloud.google.com/bigquery/
https://cloud.google.com/spanner/
https://cloud.google.com/bigtable
https://cloud.google.com/monitoring/
https://cloud.google.com/docs/geography-and-regions#regions_and_zones
https://cloud.google.com/compute/docs/disks/#repds
https://cloud.google.com/load-balancing/

1/25/2020 Patterns for scalable and resilient apps | Solutions | Google Cloud

https://cloud.google.com/solutions/scalable-and-resilient-apps 3/24

Google Cloud's serverless platform (https://cloud.google.com/serverless/) includes managed
compute and database products that offer built-in redundancy and load balancing.

Google Cloud supports CI/CD (https://cloud.google.com/docs/ci-cd/) through native tools and
integrations with popular open source technologies, to help automate building and
deploying your apps.

Stackdriver Monitoring provides metrics across your apps and infrastructure, helping you
make data-driven decisions about the performance and health of your apps.

Drivers and constraints

There are varying requirements and motivations for improving the scalability and resilience of
your app. There might also be constraints that limit your ability to meet your scalability and
resilience goals. The relative importance of these requirements and constraints varies
depending on the type of app, the pro�le of your users, and the scale and maturity of your
organization.

Drivers

To help prioritize your requirements, consider the drivers from the different parts of your
organization.

Business drivers

Common drivers from the business side include the following:

Optimize costs and resource consumption.

Minimize app downtime.

Ensure that user demand can be met during periods of high usage.

Improve quality and availability of service.

Ensure that user experience and trust are maintained during any outages.

Increase �exibility and agility to handle changing market demands.

Development drivers

https://cloud.google.com/serverless/
https://cloud.google.com/docs/ci-cd/

1/25/2020 Patterns for scalable and resilient apps | Solutions | Google Cloud

https://cloud.google.com/solutions/scalable-and-resilient-apps 4/24

Common drivers from the development side include the following:

Minimize time spent investigating failures.

Increase time spent on developing new features.

Minimize repetitive toil through automation.

Build apps using the latest industry patterns and practices.

Operations drivers

Requirements to consider from the operations side include the following:

Reduce the frequency of failures requiring human intervention.

Increase the ability to automatically recover from failures.

Minimize repetitive toil through automation.

Minimize the impact from the failure of any particular component.

Constraints

Constraints might limit your ability to increase the scalability and resilience of your app. Ensure
that your design decisions do not introduce or contribute to these constraints:

Dependencies on hardware or software that is di�cult to scale.

Dependencies on hardware or software that is di�cult to operate in a high-availability
con�guration.

Dependencies between apps.

Licensing restrictions.

Lack of skills or experience in your development and operations teams.

Organizational resistance to automation.

Pa�erns and practices

The remainder of this document de�nes patterns and practices to help you build resilient and
scalable apps. These patterns touch all parts of your app lifecycle, including your infrastructure

1/25/2020 Patterns for scalable and resilient apps | Solutions | Google Cloud

https://cloud.google.com/solutions/scalable-and-resilient-apps 5/24

design, app architecture, storage choices, deployment processes, and organizational culture.

Three themes are evident in the patterns:

Automation. Building scalable and resilient apps requires automation. Automating your
infrastructure provisioning, testing, and app deployments increases consistency and
speed, and minimizes human error.

Loose coupling. Treating your system as a collection of loosely coupled, independent
components allows �exibility and resilience. Independence covers how you physically
distribute your resources and how you architect your app and design your storage.

Data-driven design. Collecting metrics to understand the behavior of your app is critical.
Decisions about when to scale your app, or whether a particular service is unhealthy, need
to be based on data. Metrics and logs should be core features.

Automate your infrastructure provisioning

Create immutable infrastructure through automation to improve the consistency of your
environments and increase the success of your deployments.

Treat your infrastructure as code

Infrastructure as code (IaC) is a technique that encourages you to treat your infrastructure
provisioning and con�guration in the same way you handle application code. Your provisioning
and con�guration logic is stored in source control so that it's discoverable and can be versioned
and audited. Because it's in a code repository, you can take advantage of continuous
integration and continuous deployment (CI/CD) pipelines, so that any changes to your
con�guration can be automatically tested and deployed.

By removing manual steps from your infrastructure provisioning, IaC minimizes human error
and improves the consistency and reproducibility of your apps and environments. In this way,
adopting IaC increases the resilience of your apps.

Cloud Deployment Manager (https://cloud.google.com/deployment-manager/) lets you automate the
creation and management of Google Cloud resources with �exible templates. Google Cloud
also has built-in support for popular third-party IaC tools, including Terraform, Chef, and Puppet.
For more information, see the Infrastructure as Code
 (https://cloud.google.com/solutions/infrastructure-as-code/) solution page.

https://cloud.google.com/deployment-manager/
https://cloud.google.com/solutions/infrastructure-as-code/

1/25/2020 Patterns for scalable and resilient apps | Solutions | Google Cloud

https://cloud.google.com/solutions/scalable-and-resilient-apps 6/24

Create immutable infrastructure

Immutable infrastructure is a philosophy that builds on the bene�ts of infrastructure as code.
Immutable infrastructure mandates that resources never be modi�ed after they're deployed. If a
virtual machine, Kubernetes cluster, or �rewall rule needs to be updated, you can update the
con�guration for the resource in the source repository. After you've tested and validated the
changes, you fully redeploy the resource using the new con�guration. In other words, rather
than tweaking resources, you re-create them.

Creating immutable infrastructure leads to more predictable deployments and rollbacks. It also
mitigates issues that are common in mutable infrastructures, like con�guration drift and
snow�ake servers (https://martinfowler.com/bliki/Snow�akeServer.html). In this way, adopting
immutable infrastructure further improves the consistency and reliability of your environments.

Design for high availability

Availability is a measure of the uptime (https://wikipedia.org/wiki/Uptime) of a system. In software
systems, high availability is typically achieved through redundantly deploying components. In
simplest terms, highly available architectures typically involve distribution of compute
resources, load balancing, and replication of data.

Physically distribute resources

Google Cloud services are available in locations across the globe. These locations are divided
into regions and zones (https://cloud.google.com/docs/geography-and-regions#regions_and_zones).
How you deploy your app across these regions and zones affects the availability, latency, and
other properties of your app. For more information, see best practices for Compute Engine
region selection (https://cloud.google.com/solutions/best-practices-compute-engine-region-selection).

Redundancy is the duplication of components of a system in order to increase the overall
availability of that system. In Google Cloud, redundancy is typically achieved by deploying your
app or service to multiple zones, or even in multiple regions. If a service exists in multiple zones
or regions, it can better withstand service disruptions in a particular zone or region. Although
Google Cloud makes every effort to prevent such disruptions, certain events are unpredictable
and it's best to be prepared.

https://martinfowler.com/bliki/SnowflakeServer.html
https://wikipedia.org/wiki/Uptime
https://cloud.google.com/docs/geography-and-regions#regions_and_zones
https://cloud.google.com/solutions/best-practices-compute-engine-region-selection

1/25/2020 Patterns for scalable and resilient apps | Solutions | Google Cloud

https://cloud.google.com/solutions/scalable-and-resilient-apps 7/24

With Compute Engine managed instance groups
 (https://cloud.google.com/compute/docs/instance-groups/), you can distribute virtual machine
instances across multiple zones in a region, and you can manage the instances as a logical
unit. Google Cloud also offers regional persistent disks
 (https://cloud.google.com/compute/docs/disks/#repds) to automatically replicate your data to two
zones in a region.

You can similarly improve the availability and resilience of your apps deployed on GKE by
creating regional clusters
 (https://cloud.google.com/kubernetes-engine/docs/concepts/regional-clusters). A regional cluster
distributes GKE masters, nodes, and pods across multiple zones within a region. Because your
masters are distributed, you can continue to access the cluster's control plane even during an
outage involving one or more (but not all) zones.

Favor managed services

Rather than independently installing, supporting, and operating all parts of your application
stack, you can use managed services to consume parts of your application stack as services.
For example, rather than installing and managing a MySQL database on virtual machines
(VMs), you can instead use a MySQL database provided by Cloud SQL
 (https://cloud.google.com/sql/). You then get an availability Service Level Agreement (SLA)
 (https://cloud.google.com/sql/sla) and can rely on Google Cloud to manage data replication,
backups, and the underlying infrastructure. By using managed services, you can spend less
time managing infrastructure, and more time on improving the reliability of your app.

Many of Google Cloud's managed compute, database, and storage services offer built-in
redundancy, which can help you meet your availability goals. Many of these services offer a
regional model, which means the infrastructure that runs your app is located in a speci�c region
and is managed by Google to be redundantly available across all the zones within that region.
If a zone becomes unavailable, your app or data automatically serves from another zone in the
region.

Certain database and storage services also offer multi-regional availability, which means that
the infrastructure that runs your app is located in several regions. Multi-regional services can
withstand the loss of an entire region, but typically at the cost of higher latency.

Load-balance at each tier

https://cloud.google.com/compute/docs/instance-groups/
https://cloud.google.com/compute/docs/disks/#repds
https://cloud.google.com/kubernetes-engine/docs/concepts/regional-clusters
https://cloud.google.com/sql/
https://cloud.google.com/sql/sla

1/25/2020 Patterns for scalable and resilient apps | Solutions | Google Cloud

https://cloud.google.com/solutions/scalable-and-resilient-apps 8/24

Load balancing lets you distribute tra�c among groups of resources. When you distribute
tra�c, you help ensure that individual resources don't become overloaded while others sit idle.
Most load balancers also provide health-checking features to help ensure that tra�c isn't routed
to unhealthy or unavailable resources.

Google Cloud offers several load-balancing choices. If your app runs on Compute Engine or
GKE, you can choose the most appropriate type of load balancer depending on the type, source,
and other aspects of the tra�c. For more information, see the load-balancing overview
 (https://cloud.google.com/load-balancing/docs/load-balancing-overview) and GKE networking
overview (https://cloud.google.com/kubernetes-engine/docs/concepts/network-overview).

Alternatively, some Google Cloud-managed services, such as App Engine and Cloud Run,
automatically load-balance tra�c.

It's common practice to load-balance requests received from external sources, such as from
web or mobile clients. However, using load balancers between different services or tiers within
your app can also increase resilience and �exibility. Google Cloud provides internal layer 4
 (https://cloud.google.com/load-balancing/docs/internal/) and layer 7
 (https://cloud.google.com/load-balancing/docs/l7-internal/) load balancing for this purpose.

The following diagram shows an external load balancer distributing global tra�c across two
regions, us-central1 and asia-east1. It also shows internal load balancing distributing tra�c
from the web tier to the internal tier within each region.

https://cloud.google.com/load-balancing/docs/load-balancing-overview
https://cloud.google.com/kubernetes-engine/docs/concepts/network-overview
https://cloud.google.com/load-balancing/docs/internal/
https://cloud.google.com/load-balancing/docs/l7-internal/

1/25/2020 Patterns for scalable and resilient apps | Solutions | Google Cloud

https://cloud.google.com/solutions/scalable-and-resilient-apps 9/24

Monitor your infrastructure and apps

Before you can decide how to improve the resilience and scalability of your app, you need to
understand its behavior. Having access to a comprehensive set of relevant metrics and time
series about the performance and health of your app can help you discover potential issues
before they cause an outage. They can also help you diagnose and resolve an outage if it does
occur. The monitoring distributed systems
 (https://landing.google.com/sre/sre-book/chapters/monitoring-distributed-systems) chapter in the
Google SRE book (https://landing.google.com/sre/books/) provides a good overview of some
approaches to monitoring.

In addition to providing insight into the health of your app, metrics can also be used to control
autoscaling behavior for your services.

Stackdriver Monitoring (https://cloud.google.com/monitoring/) is Google Cloud's integrated
monitoring tool. Monitoring ingests events, metrics, and metadata, and provides insights
through dashboards and alerts. Most Google Cloud services automatically send metrics
 (https://cloud.google.com/monitoring/api/metrics) to Stackdriver Monitoring, and Google Cloud also
supports many third-party sources. Stackdriver Monitoring can also be used as a backend for

https://landing.google.com/sre/sre-book/chapters/monitoring-distributed-systems
https://landing.google.com/sre/books/
https://cloud.google.com/monitoring/
https://cloud.google.com/monitoring/api/metrics

1/25/2020 Patterns for scalable and resilient apps | Solutions | Google Cloud

https://cloud.google.com/solutions/scalable-and-resilient-apps 10/24

popular open source monitoring tools, providing a "single pane of glass" with which to observe
your app.

Monitor at all levels

Gathering metrics at various levels or tiers within your architecture provides a holistic picture of
your app's health and behavior.

Infrastructure monitoring

Infrastructure-level monitoring provides the baseline health and performance for your app. This
approach to monitoring captures information like CPU load, memory usage, and the number of
bytes written to disk. These metrics can indicate that a machine is overloaded, which might
warrant triggering a scaling event or generating an alert indicating that there is a problem with
the machine.

In addition to the metrics collected automatically, Monitoring provides an agent
 (https://cloud.google.com/monitoring/agent/) that can be installed to collect more detailed
information from Compute Engine VMs, including from third-party apps running on those
machines.

App monitoring

We recommend that you capture app-level metrics. For example, you might want to measure
how long it takes to execute a particular query, or how long it takes to perform a related
sequence of service calls. You de�ne these app-level metrics yourself. They capture information
that the built-in Monitoring metrics cannot. App-level metrics can capture aggregated
conditions that more closely re�ect key work�ows, and they can reveal problems that low-level
infrastructure metrics do not.

We also recommend using OpenCensus
 (https://cloud.google.com/monitoring/custom-metrics/open-census) to capture your app-level metrics.
OpenCensus is open source, provides a �exible API, and can be con�gured to export metrics to
the Monitoring backend.

Service monitoring

https://cloud.google.com/monitoring/agent/
https://cloud.google.com/monitoring/custom-metrics/open-census

1/25/2020 Patterns for scalable and resilient apps | Solutions | Google Cloud

https://cloud.google.com/solutions/scalable-and-resilient-apps 11/24

For distributed and microservices-driven apps, it's important to monitor the interactions between
the different services and components in your apps. These metrics can help you diagnose
problems like increased numbers of errors or latency between services, that once again warrant
alerting or scaling.

Istio (https://istio.io/docs/concepts/what-is-istio/) is an open source tool that provides behavioral
insights and operational control over your network of microservices. Istio generates detailed
telemetry for all service communications, and it can be con�gured to send the metrics to
Stackdriver.

End-to-end monitoring

End-to-end monitoring, also called black-box monitoring, tests externally visible behavior the
way a user sees it. This type of monitoring checks whether a user is able to complete critical
actions within your de�ned thresholds. This coarse-grained monitoring can uncover errors or
latency that �ner-grained monitoring might not, and it reveals availability as perceived by the
user.

Expose the health of your apps

A highly available system must have some way of determining which parts of the system are
healthy and functioning correctly. If certain resources appear unhealthy, the system can send
requests elsewhere. Typically health checks involve pulling data from an endpoint to determine
the status or health of a service.

Health checking is a key responsibility of load balancers. When you create a load balancer that
is associated with a group of virtual machine instances, you also de�ne a health check
 (https://cloud.google.com/load-balancing/docs/health-check-concepts). The health check de�nes how
the load balancer communicates with the virtual machines to evaluate whether particular
instances should continue to receive tra�c. Load-balancer health checks can also be used to
autoheal
 (https://cloud.google.com/compute/docs/instance-groups/creating-groups-of-managed-
instances#monitoring_groups)

groups of instances such that unhealthy machines are re-created. If you are running on GKE
and load-balancing external tra�c through an ingress resource, GKE automatically creates
appropriate health checks for the load balancer.

https://istio.io/docs/concepts/what-is-istio/
https://cloud.google.com/load-balancing/docs/health-check-concepts
https://cloud.google.com/compute/docs/instance-groups/creating-groups-of-managed-instances#monitoring_groups

1/25/2020 Patterns for scalable and resilient apps | Solutions | Google Cloud

https://cloud.google.com/solutions/scalable-and-resilient-apps 12/24

Kubernetes has built-in support for liveness and readiness probes. These probes help the
Kubernetes orchestrator decide how to manage pods and requests within your cluster. If your
app is deployed on Kubernetes, it's a good idea to expose the health
 (https://cloud.google.com/solutions/best-practices-for-operating-
containers#expose_the_health_of_your_application)

of your app to these probes through appropriate endpoints.

Establish key metrics

Monitoring and health checking provide you with metrics on the behavior and status of your
app. The next step is to analyze those metrics to determine which are the most descriptive or
impactful. The key metrics vary, depending on the platform that the app is deployed on, and on
the work that the app is doing. For example, some parts of your app might be CPU bound, while
others might be I/O bound.

You're not likely to �nd just one metric that indicates whether to scale your app, or that a
particular service is unhealthy. Often it's a combination of factors that together indicate a
certain set of conditions. With Monitoring, you can create custom metrics
 (https://cloud.google.com/monitoring/custom-metrics/) to help capture these conditions. The Google
SRE book advocates four golden signals
 (https://landing.google.com/sre/sre-book/chapters/monitoring-distributed-
systems/#xref_monitoring_golden-signals)

for monitoring a user-facing system: latency, tra�c, errors, and saturation.

Also consider your tolerance for outliers. Using an average or median value to measure health
or performance might not be the best choice, because these measures can hide wide
imbalances. It's therefore important to consider the metric distribution; the 99th percentile might
be a more informative measure than the average.

Store the metrics

Metrics from your monitoring system are useful in the short term to help with real-time health
checks or to investigate recent problems. Monitoring retains your metrics for several weeks
 (https://cloud.google.com/monitoring/quotas#data_retention_policy) to best meet those use cases.

However, there is also value in storing your monitoring metrics for longer-term analysis. Having
access to a historical record can help you adopt a data-driven approach to re�ning your app
architecture. You can use data collected during and after an outage to identify bottlenecks and

https://cloud.google.com/solutions/best-practices-for-operating-containers#expose_the_health_of_your_application
https://cloud.google.com/monitoring/custom-metrics/
https://landing.google.com/sre/sre-book/chapters/monitoring-distributed-systems/#xref_monitoring_golden-signals
https://cloud.google.com/monitoring/quotas#data_retention_policy

1/25/2020 Patterns for scalable and resilient apps | Solutions | Google Cloud

https://cloud.google.com/solutions/scalable-and-resilient-apps 13/24

interdependencies in your apps. You can also use the data to help create and validate
meaningful tests.

Historical data can also help validate that your app is supporting business goals during key
periods. For example, the data can help you analyze how your app scaled during high-tra�c
promotional events over the course of the last few quarters or even years.

For details on how to export and store your metrics, see the Monitoring metric export
 (https://cloud.google.com/solutions/stackdriver-monitoring-metric-export) solution.

Determine scaling pro�le

You want your app to meet its user experience and performance goals without over-
provisioning resources.

The following diagram shows how a simpli�ed representation of an app's scaling pro�le. The
app maintains a baseline level of resources, and uses autoscaling to respond to changes in
demand.

Autoscaling

Baseline

Balance cost and user experience

Deciding whether to scale your app is fundamentally about balancing cost against user
experience. Decide what your minimum acceptable level of performance is, and potentially also
where to set a ceiling. These thresholds vary from app to app, and also potentially across
different components or services within a single app.

For example, a consumer-facing web or mobile app might have strict latency goals. Research
shows (https://developers.google.com/web/fundamentals/performance/why-performance-matters/) that
even small delays can negatively impact how users perceive your app, resulting in lower

https://cloud.google.com/solutions/stackdriver-monitoring-metric-export
https://developers.google.com/web/fundamentals/performance/why-performance-matters/

1/25/2020 Patterns for scalable and resilient apps | Solutions | Google Cloud

https://cloud.google.com/solutions/scalable-and-resilient-apps 14/24

conversions and fewer signups. Therefore, it's important to ensure that your app has enough
serving capacity to quickly respond to user requests. In this instance, the higher costs of
running more web servers might be justi�ed.

The cost-to-performance ratio might be different for a non-business-critical internal app where
users are probably more tolerant of small delays. Hence, your scaling pro�le can be less
aggressive. In this instance, keeping costs low might be of greater importance than optimizing
the user experience.

Set baseline resources

Another key component of your scaling pro�le is deciding on an appropriate minimum set of
resources.

Compute Engine virtual machines or GKE clusters typically take time to scale up, because new
nodes need to be created and initialized. Therefore, it might be necessary to maintain a
minimum set of resources, even if there is no tra�c. Again, the extent of baseline resources is
in�uenced by the type of app and tra�c pro�le.

Conversely, serverless technologies like App Engine, Cloud Functions, and Cloud Run are
designed to scale to zero, and to start up and scale quickly, even in the instance of a cold start.
Depending on the type of app and tra�c pro�le, these technologies can deliver e�ciencies for
parts of your app.

Con�gure autoscaling

Autoscaling (https://wikipedia.org/wiki/Autoscaling) helps you to automatically scale the
computing resources consumed by your app. Typically, autoscaling occurs when certain
metrics are exceeded or conditions are met. For example, if request latencies to your web tier
start exceeding a certain value, you might want to automatically add more machines to
increase serving capacity.

Many Google Cloud compute products have autoscaling features. Serverless managed services
like Cloud Run, Cloud Functions, and App Engine are designed to scale quickly. These services
typically offer con�guration options to limit or in�uence autoscaling behavior, but in general,
much of the autoscaler behavior is hidden from the operator.

Compute Engine and GKE provide more options to control scaling behavior. With Compute
Engine, you can scale based on various inputs

https://wikipedia.org/wiki/Autoscaling
https://cloud.google.com/compute/docs/load-balancing-and-autoscaling

1/25/2020 Patterns for scalable and resilient apps | Solutions | Google Cloud

https://cloud.google.com/solutions/scalable-and-resilient-apps 15/24

 (https://cloud.google.com/compute/docs/load-balancing-and-autoscaling), including Stackdriver
custom metrics and load-balancer serving capacity. You can set minimum and maximum limits
on the scaling behavior, and you can de�ne multiple scaling policies
 (https://cloud.google.com/compute/docs/autoscaler/multiple-policies) to handle different scenarios.
As with GKE, you can con�gure the cluster autoscaler
 (https://cloud.google.com/kubernetes-engine/docs/concepts/cluster-autoscaler) to add or remove
nodes based on workload or pod metrics
 (https://cloud.google.com/kubernetes-engine/docs/tutorials/custom-metrics-autoscaling), or on metrics
external (https://cloud.google.com/kubernetes-engine/docs/tutorials/external-metrics-autoscaling) to the
cluster.

We recommend that you con�gure autoscaling behavior based on key app metrics, on your cost
pro�le, and on your de�ned minimum required level of resources.

Minimize sta�up time

For scaling to be effective, it must happen quickly enough to handle the increasing load. This is
especially true when adding compute or serving capacity.

Use pre-baked images

If your app runs on Compute Engine VMs, you likely need to install software and con�gure the
instances to run your app. Although you can use startup scripts
 (https://cloud.google.com/compute/docs/startupscript) to con�gure new instances, a more e�cient
way is to create a custom image (https://cloud.google.com/compute/docs/images#custom_images). A
custom image is a boot disk that you set up with your app-speci�c software and con�guration.

For more information on managing images, see the image-management best practices
 (https://cloud.google.com/solutions/image-management-best-practices) article.

When you've created your image, you can de�ne an instance template
 (https://cloud.google.com/compute/docs/instance-templates/). Instance templates combine the boot
disk image, machine type, and other instance properties. You can then use an instance template
to create individual VM instances or a managed instance group
 (https://cloud.google.com/compute/docs/instance-groups/creating-groups-of-managed-instances).
Instance templates are a convenient way to save a VM instance's con�guration so you can use
it later to create identical new VM instances.

https://cloud.google.com/compute/docs/load-balancing-and-autoscaling
https://cloud.google.com/compute/docs/autoscaler/multiple-policies
https://cloud.google.com/kubernetes-engine/docs/concepts/cluster-autoscaler
https://cloud.google.com/kubernetes-engine/docs/tutorials/custom-metrics-autoscaling
https://cloud.google.com/kubernetes-engine/docs/tutorials/external-metrics-autoscaling
https://cloud.google.com/compute/docs/startupscript
https://cloud.google.com/compute/docs/images#custom_images
https://cloud.google.com/solutions/image-management-best-practices
https://cloud.google.com/compute/docs/instance-templates/
https://cloud.google.com/compute/docs/instance-groups/creating-groups-of-managed-instances

1/25/2020 Patterns for scalable and resilient apps | Solutions | Google Cloud

https://cloud.google.com/solutions/scalable-and-resilient-apps 16/24

Although creating custom images and instance templates can increase your deployment speed,
it can also increase maintenance costs because the images might need to be updated more
frequently. For more information, see the balancing image con�guration and deployment speed
 (https://cloud.google.com/solutions/dr-scenarios-building-
blocks#balancing_image_con�guration_and_deployment_speed)

docs.

Containerize your app

An alternative to building customized VM instances is to containerize your app. A container
 (https://cloud.google.com/containers/) is a lightweight, standalone, executable package of
software that includes everything needed to run an app: code, runtime, system tools, system
libraries, and settings. These characteristics make containerized apps more portable, easier to
deploy, and easier to maintain at scale than virtual machines. Containers are also typically fast
to start, which makes them suitable for scalable and resilient apps.

Google Cloud offers several services to run your app containers. Cloud Run
 (https://cloud.google.com/run/) provides a serverless, managed compute platform to host your
stateless containers. The App Engine Flexible (https://cloud.google.com/appengine/docs/�exible/)

environment hosts your containers in a managed platform as a service (PaaS). GKE
 (https://cloud.google.com/kubernetes-engine/) provides a managed Kubernetes environment to host
and orchestrate your containerized apps. You can also run your app containers on Compute
Engine (https://cloud.google.com/compute/docs/containers/) when you need complete control over
your container environment.

Optimize your app for fast sta�up

In addition to ensuring your infrastructure and app can be deployed as e�ciently as possible,
it's also important to ensure your app comes online quickly.

The optimizations that are appropriate for your app vary depending on the app's characteristics
and execution platform. It's important to do the following:

Find and eliminate bottlenecks by pro�ling the critical sections of your app that are
invoked at startup.

Reduce initial startup time by implementing techniques like lazy initialization, particularly
of expensive resources.

Minimize app dependencies that might need to be loaded at startup time.

https://cloud.google.com/solutions/dr-scenarios-building-blocks#balancing_image_configuration_and_deployment_speed
https://cloud.google.com/containers/
https://cloud.google.com/run/
https://cloud.google.com/appengine/docs/flexible/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/compute/docs/containers/

1/25/2020 Patterns for scalable and resilient apps | Solutions | Google Cloud

https://cloud.google.com/solutions/scalable-and-resilient-apps 17/24

Favor modular architectures

You can increase the �exibility of your app by choosing architectures that enable components
to be independently deployed, managed, and scaled. This pattern can also improve resiliency
by eliminating single points of failure.

Break your app into independent services

If you design your app as a set of loosely coupled, independent services, you can increase your
app's �exibility. If you adopt a loosely coupled design, it lets your services be independently
released and deployed. In addition to many other bene�ts, this approach enables those services
to use different tech stacks and to be managed by different teams. This loosely coupled
approach is the key theme of architecture patterns like microservices and SOA.

As you consider how to draw boundaries around your services, availability and scalability
requirements are key dimensions. For example, if a given component has a different availability
requirement or scaling pro�le from your other components, it might be a good candidate for a
standalone service.

For more information, see Migrating a monolithic app to microservices
 (https://cloud.google.com/solutions/migrating-a-monolithic-app-to-microservices-gke).

Aim for statelessness

A stateless app or service does not retain any local persistent data or state. A stateless model
ensures that you can handle each request or interaction with the service independent of
previous requests. This model facilitates scalability and recoverability, because it means that
the service can grow, shrink, or be restarted without losing data that's required in order to handle
any in-�ight processes or requests. Statelessness is especially important when you are using an
autoscaler, because the instances, nodes, or pods hosting the service can be created and
destroyed unexpectedly.

It might not be possible for all your services to be stateless. In such a case, be explicit about
services that require state. By ensuring clean separation of stateless and stateful services, you
can ensure easy scalability for stateless services while adopting a more considered approach
for stateful services.

https://cloud.google.com/solutions/migrating-a-monolithic-app-to-microservices-gke

1/25/2020 Patterns for scalable and resilient apps | Solutions | Google Cloud

https://cloud.google.com/solutions/scalable-and-resilient-apps 18/24

Manage communication between services

One challenge with distributed microservices architectures is managing communication
between services. As your network of services grows, it's likely that service interdependencies
will also grow. You don't want the failure of one service to result in the failure of other services,
sometimes called a cascading failure.

You can help reduce tra�c to an overloaded service or failing service by adopting techniques
like the circuit breaker (https://martinfowler.com/bliki/CircuitBreaker.html) pattern, exponential
backoffs (https://wikipedia.org/wiki/Exponential_backoff), and graceful degradation
 (https://landing.google.com/sre/sre-book/chapters/addressing-cascading-failures/#xref_cascading-
failure_load-shed-graceful-degredation)

. These patterns increase the resiliency of your app either by giving overloaded services a
chance to recover, or by gracefully handling error states. For more information, see the
addressing cascading failures
 (https://landing.google.com/sre/sre-book/chapters/addressing-cascading-failures/) chapter in the
Google SRE book.

Using a service mesh
 (https://cloud.google.com/blog/products/networking/welcome-to-the-service-mesh-era-introducing-a-new-
istio-blog-post-series)

can help you manage tra�c across your distributed services. A service mesh is software that
links services together, and helps decouple business logic from networking. A service mesh
typically provides resiliency features like request retries, failovers, and circuit breakers.

Use appropriate database and storage technology

Certain databases and types of storage are di�cult to scale and make resilient. Make sure that
your database choices don't constrain your app's availability and scalability.

Evaluate your database needs

The pattern of designing your app as a set of independent services also extends to your
databases and storage. It might be appropriate to choose different types of storage for
different parts of your app, which results in heterogeneous storage.

Traditional apps often operate exclusively with relational databases. Relational databases offer
useful functionality such as transactions, strong consistency, referential integrity, and

https://martinfowler.com/bliki/CircuitBreaker.html
https://wikipedia.org/wiki/Exponential_backoff
https://landing.google.com/sre/sre-book/chapters/addressing-cascading-failures/#xref_cascading-failure_load-shed-graceful-degredation
https://landing.google.com/sre/sre-book/chapters/addressing-cascading-failures/
https://cloud.google.com/blog/products/networking/welcome-to-the-service-mesh-era-introducing-a-new-istio-blog-post-series

1/25/2020 Patterns for scalable and resilient apps | Solutions | Google Cloud

https://cloud.google.com/solutions/scalable-and-resilient-apps 19/24

sophisticated querying across tables. These features make relational databases a good choice
for many common app features. However, relational databases also have some constraints.
They are typically hard to scale, and they require careful management in a high-availability
con�guration. A relational database might not be the best choice for all your database needs.

Non-relational databases, often referred to as NoSQL databases, take a different approach.
Although details vary across products, NoSQL databases typically sacri�ce some features of
relational databases in favor of increased availability and easier scalability. In terms of the CAP
theorem (https://wikipedia.org/wiki/CAP_theorem), NoSQL databases often choose availability over
consistency.

Whether a NoSQL database is appropriate often comes down to the required degree of
consistency. If your data model for a particular service does not require all the features of an
RDBMS, and can be designed to be eventually consistent, choosing a NoSQL database might
offer increased availability and scalability.

In addition to a range of relational and NoSQL databases, Google Cloud also offers Cloud
Spanner (https://cloud.google.com/spanner/), a strongly consistent, highly available, and globally
distributed database with support for SQL. For information about choosing an appropriate
database on Google Cloud, see Google Cloud databases
 (https://cloud.google.com/products/databases/).

Implement caching

A cache's primary purpose is to increase data retrieval performance by reducing the need to
access the underlying slower storage layer.

Caching supports improved scalability by reducing reliance on disk-based storage. Because
requests can be served from memory, request latencies to the storage layer are reduced,
typically allowing your service to handle more requests. In addition, caching can reduce the
load on services that are downstream of your app, especially databases, allowing other
components that interact with that downstream service to also scale more easily or at all.

Caching can also increase resiliency by supporting techniques like graceful degradation
 (https://landing.google.com/sre/sre-book/chapters/addressing-cascading-failures/#xref_cascading-
failure_load-shed-graceful-degredation)

. If the underlying storage layer is overloaded or unavailable, the cache can continue to handle
requests. And even though the data returned from the cache might be incomplete or not up to
date, that might be acceptable for certain scenarios.

https://wikipedia.org/wiki/CAP_theorem
https://cloud.google.com/spanner/
https://cloud.google.com/products/databases/
https://landing.google.com/sre/sre-book/chapters/addressing-cascading-failures/#xref_cascading-failure_load-shed-graceful-degredation

1/25/2020 Patterns for scalable and resilient apps | Solutions | Google Cloud

https://cloud.google.com/solutions/scalable-and-resilient-apps 20/24

Memorystore for Redis (https://cloud.google.com/memorystore/) provides a fully managed service
that is powered by the Redis in-memory datastore. Memorystore for Redis provides low-latency
access and high throughput for heavily accessed data. It can be deployed in a high-availability
con�guration that provides cross-zone replication and automatic failover.

Modernize your development processes and culture

DevOps can be considered a broad collection of processes, culture, and tooling that promote
agility and reduced time-to-market for apps and features by breaking down silos between
development, operations, and related teams. DevOps techniques aim to improve the quality and
reliability of software.

A detailed discussion of DevOps is beyond the scope of this article, but some key aspects that
relate to improving the reliability and resilience of your app are discussed in the following
sections. For more details, see the Google Cloud DevOps page
 (https://cloud.google.com/solutions/devops/).

Design for testability

Automated testing (https://cloud.google.com/solutions/devops/devops-tech-test-automation) is a key
component of modern software delivery practices. The ability to execute a comprehensive set
of unit, integration, and system tests is essential to verify that your app behaves as expected,
and that it can progress to the next stage of the deployment cycle. Testability is a key design
criterion for your app.

We recommend that you use unit tests for the bulk of your testing because they are quick to
execute and typically easy to maintain. We also recommend that you automate higher-level
integration and system tests. These tests are greatly simpli�ed if you adopt infrastructure-as-
code techniques, because dedicated test environments and resources can be created on
demand, and then torn down once tests are complete.

As the percentage of your codebase covered by tests increases, you reduce uncertainty and the
potential decrease in reliability from each code change. Adequate testing coverage means that
you can make more changes before reliability falls below an acceptable level.

Automated testing is an integral component of continuous integration
 (https://cloud.google.com/solutions/devops/devops-process-continuous-integration). Executing a

https://cloud.google.com/memorystore/
https://cloud.google.com/solutions/devops/
https://cloud.google.com/solutions/devops/devops-tech-test-automation
https://cloud.google.com/solutions/devops/devops-process-continuous-integration

1/25/2020 Patterns for scalable and resilient apps | Solutions | Google Cloud

https://cloud.google.com/solutions/scalable-and-resilient-apps 21/24

robust set of automated tests on each code commit provides fast feedback on changes,
improving the quality and reliability of your software. Google Cloud–native tools like Cloud
Build (https://cloud.google.com/cloud-build/) and third-party tools like Jenkins
 (https://cloud.google.com/jenkins/) can help you implement continuous integration.

Automate your deployments

Continuous integration and comprehensive test automation give you con�dence in the stability
of your software. And when they are in place, your next step is automating deployment
 (https://cloud.google.com/solutions/devops/devops-process-deployment-automation) of your app. The
level of deployment automation varies depending on the maturity of your organization.

Choosing an appropriate deployment strategy is essential in order to minimize the risks
associated with deploying new software. With the right strategy, you can gradually increase the
exposure of new versions to larger audiences, verifying behavior along the way. You can also
set clear provisions for rollback if problems occur.

For examples of automating deployments, see Continuous Delivery Pipelines with Spinnaker
and GKE (https://cloud.google.com/solutions/continuous-delivery-spinnaker-kubernetes-engine) and
Automating Canary Analysis on GKE with Spinnaker
 (https://cloud.google.com/solutions/automated-canary-analysis-kubernetes-engine-spinnaker).

Adopt SRE practices for dealing with failure

For distributed apps that operate at scale, some degree of failure in one or more components is
common. If you adopt the patterns covered in this document, your app can better handle
disruptions caused by a defective software release, unexpected termination of virtual machines,
or even an infrastructure outage that affects an entire zone.

However, even with careful app design, you inevitably encounter unexpected events that require
human intervention. If you put structured processes in place to manage these events, you can
greatly reduce their impact and resolve them more quickly. Furthermore, if you examine the
causes and responses to the event, you can help protect your app against similar events in the
future.

Strong processes for managing incidents
 (https://landing.google.com/sre/sre-book/chapters/managing-incidents/) and performing blameless
postmortems (https://landing.google.com/sre/sre-book/chapters/postmortem-culture/) are key tenets

https://cloud.google.com/cloud-build/
https://cloud.google.com/jenkins/
https://cloud.google.com/solutions/devops/devops-process-deployment-automation
https://cloud.google.com/solutions/continuous-delivery-spinnaker-kubernetes-engine
https://cloud.google.com/solutions/automated-canary-analysis-kubernetes-engine-spinnaker
https://landing.google.com/sre/sre-book/chapters/managing-incidents/
https://landing.google.com/sre/sre-book/chapters/postmortem-culture/

1/25/2020 Patterns for scalable and resilient apps | Solutions | Google Cloud

https://cloud.google.com/solutions/scalable-and-resilient-apps 22/24

of SRE. Although implementing the full practices of Google SRE might not be practical for your
organization, if you adopt even a minimum set of guidelines, you can improve the resilience of
your app. The appendices in the SRE book (https://landing.google.com/sre/sre-book/toc/) contain
some templates that can help shape your processes.

Validate and review your architecture

As your app evolves, user behavior, tra�c pro�les, and even business priorities can change.
Similarly, other services or infrastructure that your app depends on can evolve. Therefore, it's
important to periodically test and validate the resilience and scalability of your app.

Test your resilience

It's critical to test that your app responds to failures in the way you expect. The overarching
theme is that the best way to avoid failure is to introduce failure and learn from it.

Simulating and introducing failures is complex. In addition to verifying the behavior of your app
or service, you must also ensure that expected alerts are generated, and appropriate metrics are
generated. We recommend a structured approach, where you introduce simple failures and then
escalate.

For example, you might proceed as follows, validating and documenting behavior at each
stage:

Introduce intermittent failures.

Block access to dependencies of the service.

Block all network communication.

Terminate hosts.

For details, see the Breaking your systems to make them unbreakable
 (https://www.youtube.com/watch?v=pVYwagnFXJI) video from Google Cloud Next 2019.

If you're using a service mesh like Istio to manage your app services, you can inject faults
 (https://istio.io/docs/concepts/tra�c-management/#fault-injection) at the application layer instead

of killing pods or machines, or you can inject corrupting packets at the TCP layer. You can
introduce delays to simulate network latency or an overloaded upstream system. You can also
introduce aborts, which mimic failures in upstream systems.

https://landing.google.com/sre/sre-book/toc/
https://www.youtube.com/watch?v=pVYwagnFXJI
https://istio.io/docs/concepts/traffic-management/#fault-injection

1/25/2020 Patterns for scalable and resilient apps | Solutions | Google Cloud

https://cloud.google.com/solutions/scalable-and-resilient-apps 23/24

Test your scaling behavior

We recommend that you use automated nonfunctional testing to verify that your app scales as
expected. Often this veri�cation is coupled with performance or load testing. You can use
simple tools like hey (https://github.com/rakyll/hey) to send load to a web app. For a more
detailed example that shows how to do load testing against a REST endpoint, see Distributed
load testing using Google Kubernetes Engine
 (https://cloud.google.com/solutions/distributed-load-testing-using-gke).

One common approach is to ensure that key metrics stay within expected levels for varying
loads. For example, if you're testing the scalability of your web tier, you might measure the
average request latencies for spiky volumes of user requests. Similarly, for a backend
processing feature, you might measure the average task-processing time when the volume of
tasks suddenly increases.

Also, you want your tests to measure that the number of resources that were created to handle
the test load is within the expected range. For example, your tests might verify that the number
of VMs that were created to handle some backend tasks does not exceed a certain value.

It's also important to test edge cases. What is the behavior of your app or service when
maximum scaling limits are reached? What is the behavior if your service is scaling down and
then load suddenly increases again? For a discussion of these topics, see the load testing
section of Peak-season production readiness
 (https://cloud.google.com/solutions/black-friday-production-readiness#helping_to_ensure_reliability).

Always be architecting

The technology world moves fast, and this is especially true of the cloud. New products and
features are released frequently, new patterns emerge, and the demands from your users and
internal stakeholders continue to grow.

As the principles for cloud-native architecture
 (https://cloud.google.com/blog/products/application-development/5-principles-for-cloud-native-
architecture-what-it-is-and-how-to-master-it?
utm_medium=email&utm_source=other&utm_campaign=partner.443.opencourse.targetedmessages.marke
ting%7Epartner.443.r7GztVGbEemwag6YIZVrbA)

blog post de�nes, always be looking for ways to re�ne, simplify, and improve the architecture of

https://github.com/rakyll/hey
https://cloud.google.com/solutions/distributed-load-testing-using-gke
https://cloud.google.com/solutions/black-friday-production-readiness#helping_to_ensure_reliability
https://cloud.google.com/blog/products/application-development/5-principles-for-cloud-native-architecture-what-it-is-and-how-to-master-it?utm_medium=email&utm_source=other&utm_campaign=partner.443.opencourse.targetedmessages.marketing%7Epartner.443.r7GztVGbEemwag6YIZVrbA

1/25/2020 Patterns for scalable and resilient apps | Solutions | Google Cloud

https://cloud.google.com/solutions/scalable-and-resilient-apps 24/24

your apps. Software systems are living things and need to adapt to re�ect your changing
priorities.

What's next

Read the principles for cloud-native architecture
 (https://cloud.google.com/blog/products/application-development/5-principles-for-cloud-native-
architecture-what-it-is-and-how-to-master-it?
utm_medium=email&utm_source=other&utm_campaign=partner.443.opencourse.targetedmessages.
marketing%7Epartner.443.r7GztVGbEemwag6YIZVrbA)

blog post.

Read the SRE books (https://landing.google.com/sre/books/) for details on how the Google
production environment is managed.

Learn more about how DevOps (https://cloud.google.com/solutions/devops/) on Google Cloud
can improve your software quality and reliability.

Try out other Google Cloud Platform features for yourself. Have a look at our tutorials
 (https://cloud.google.com/docs/tutorials).

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License
 (https://creativecommons.org/licenses/by/4.0/), and code samples are licensed under the Apache 2.0 License
 (https://www.apache.org/licenses/LICENSE-2.0). For details, see our Site Policies
 (https://developers.google.com/terms/site-policies). Java is a registered trademark of Oracle and/or its a�liates.

Last updated January 15, 2020.

https://cloud.google.com/blog/products/application-development/5-principles-for-cloud-native-architecture-what-it-is-and-how-to-master-it?utm_medium=email&utm_source=other&utm_campaign=partner.443.opencourse.targetedmessages.marketing%7Epartner.443.r7GztVGbEemwag6YIZVrbA
https://landing.google.com/sre/books/
https://cloud.google.com/solutions/devops/
https://cloud.google.com/docs/tutorials
https://creativecommons.org/licenses/by/4.0/
https://www.apache.org/licenses/LICENSE-2.0
https://developers.google.com/terms/site-policies

