
1/25/2020 Choose Size and Scope of Google Kubernetes Engine Clusters | Architectures | Google Cloud

https://cloud.google.com/solutions/scope-and-size-kubernetes-engine-clusters 1/6

Solutions

Solutions

Architectures Guides

This article presents criteria to consider when you are deciding which workloads to run on a
shared Google Kubernetes Engine cluster and determining the right size for a cluster.

By using containers instead of virtual machines, you can pack more workloads on the same
infrastructure while providing isolation between workloads.

Applications and the containers that they run in have different CPU and memory requirements.
As a container orchestration platform, Kubernetes schedules containers across machines to
accommodate CPU and memory needs. How much it can optimize machine utilization for you
depends on the workloads and the machines that are available to schedule workloads on.

You might expect that larger clusters running a multitude of workloads would provide better
utilization than smaller clusters running only a few workloads. However, sharing clusters
among many different workloads can introduce additional complexity and constraints, which
can outweigh the potential bene�ts.

Google Kubernetes Engine is designed to support a wide range of cluster sizes. The minimum
size of a cluster is de�ned by the number of zones it spans: one for a zonal cluster and three for
a regional cluster. The maximum size of a Google Kubernetes Engine cluster is de�ned as
 (https://cloud.google.com/kubernetes-engine/quotas):

50 clusters per zone

5000 nodes per cluster

100 pods per node

 (https://cloud.google.com/solutions/)

 (https://cloud.google.com/solutions/)

 (https://cloud.google.com/solutions/architecture/)

Choose Size and Scope of Google Kubernetes
Engine Clusters

https://cloud.google.com/solutions/
https://cloud.google.com/solutions/
https://cloud.google.com/solutions/architecture/
https://cloud.google.com/solutions
https://cloud.google.com/kubernetes-engine/quotas

1/25/2020 Choose Size and Scope of Google Kubernetes Engine Clusters | Architectures | Google Cloud

https://cloud.google.com/solutions/scope-and-size-kubernetes-engine-clusters 2/6

300,000 containers

Within these limits, you decide what the right size for a cluster is. The following sections give
you an overview of criteria and tradeoffs to consider.

Sizing a Google Kubernetes Engine cluster

Workload mobility

Kubernetes attempts to schedule pods across nodes in a manner that makes the best use of
available resources. Scheduling includes not only choosing machines to run a pod on for the
�rst time, but heeding pod disruption budgets
 (https://kubernetes.io/docs/concepts/workloads/pods/disruptions/). Kubernetes might also
reschedule running pods to optimize utilization. Optimization is constrained, however, if
workloads use certain features:

Node selectors
 (https://kubernetes.io/docs/concepts/con�guration/assign-pod-node/#nodeselector)

Node a�nity or anti-a�nity
 (https://kubernetes.io/docs/concepts/con�guration/assign-pod-node/#a�nity-and-anti-a�nity)

Node taints or tolerations
 (https://kubernetes.io/docs/concepts/con�guration/taint-and-toleration/)

Persistent volumes (https://kubernetes.io/docs/concepts/storage/persistent-volumes/)

Stateful sets (https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/)

If many of your workloads are constrained in any of these ways, the allocation of pods across
nodes will be largely static. Being unable to schedule pods freely not only means that utilization
might be suboptimal, it also makes cluster autoscaling less effective. In the worst case, it can
even mean that in the event of a node failure, Kubernetes can't reschedule pods even if
compute capacity is available.

To achieve high utilization, let Kubernetes freely schedule pods. If that isn't possible, consider
using smaller, workload-speci�c clusters. If you can anticipate how pods will be allocated
across nodes considering the constraints of your pods, you can choose machine sizes that
match the CPU and memory-size requirements of your containers. To ensure redundancy,

https://kubernetes.io/docs/concepts/workloads/pods/disruptions/
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/

1/25/2020 Choose Size and Scope of Google Kubernetes Engine Clusters | Architectures | Google Cloud

https://cloud.google.com/solutions/scope-and-size-kubernetes-engine-clusters 3/6

con�gure node pools so that in the event of a node or zone failure, workloads can be migrated
to other nodes without violating any constraints.

Workload uniformity

When your workloads are perfectly uniform and all containers require the same amount of CPU
and memory, Kubernetes can schedule workloads smoothly across nodes. The more diverse the
workload, however, the more di�cult it is to �nd an allocation that doesn't waste resources due
to fragmentation. For diverse workloads, larger clusters tend to exhibit better resource
utilization.

Workload elasticity

In most cases, the cluster workload is not static. Deployments might be added or removed and,
most importantly, the number of running pods might change due to the use of horizontal pod
autoscaling (https://cloud.google.com/kubernetes-engine/docs/how-to/scaling-apps).

If your workloads vary, enable the cluster autoscaler
 (https://cloud.google.com/kubernetes-engine/docs/concepts/cluster-autoscaler) feature. When this
feature is active, Google Kubernetes Engine tries to approximate the required capacity by
dynamically adding or removing nodes from the underlying node pool. When the capacity of a
machine is signi�cantly larger than the extra capacity needed, a machine added to the node
pool might initially exhibit poor utilization. In a large cluster, this effect can be negligible, but in
smaller clusters, the overhead can be signi�cant. To minimize overhead and costs, either use
larger clusters or smaller machines.

Scoping a Google Kubernetes Engine cluster

Workload regionality

To minimize latency, improve availability, or comply with regulations, you might need to run
workloads in a speci�c region or across multiple regions. A Google Kubernetes Engine cluster
runs within a single region or within a single zone
 (https://cloud.google.com/kubernetes-engine/docs/concepts/multi-zone-and-regional-clusters). The
number of regions needed to run workloads, therefore, dictates the minimum number of Google
Kubernetes Engine clusters that you need.

https://cloud.google.com/kubernetes-engine/docs/how-to/scaling-apps
https://cloud.google.com/kubernetes-engine/docs/concepts/cluster-autoscaler
https://cloud.google.com/kubernetes-engine/docs/concepts/multi-zone-and-regional-clusters

1/25/2020 Choose Size and Scope of Google Kubernetes Engine Clusters | Architectures | Google Cloud

https://cloud.google.com/solutions/scope-and-size-kubernetes-engine-clusters 4/6

Workload criticality

Whenever an incident affects a mission-critical workload, operations staff should be noti�ed so
that they can begin to remediate the problem. But what if a cluster runs both mission-critical
and non-critical workloads? In case of an incident, it might not be immediately clear whether
only non-critical or also critical workloads are affected. Although Kubernetes allows you to
classify (https://kubernetes.io/docs/concepts/con�guration/pod-priority-preemption/) workloads by
priority, it is better to only run workloads with similar criticality on the same cluster.

Service discovery and communication

Workloads that run on the same cluster can rely on the service discovery and load balancing
features of Kubernetes. If workloads need to communicate across clusters, however, you might
need to use external service registries or load balancers
 (https://cloud.google.com/solutions/prep-kubernetes-engine-for-
prod#connecting_to_a_cluster_from_inside_gcp)

to make sure that those workloads can discover and reach one another.

From a service discovery and communication perspective, it's generally easier to manage
dependent workloads—for example, a frontend and a backend application—in a single, larger
cluster rather in dedicated, smaller clusters.

Identity and access management

In Google Cloud, access management is handled within the scope of a project. It is, therefore, a
common and recommended practice to model projects after an organization's team structure.

Google Kubernetes Engine clusters are part of a project; you can't share them across multiple
projects. Therefore, a Google Kubernetes Engine cluster is also subject to your project's Cloud
Identity and Access Management (https://cloud.google.com/iam/) (IAM) con�guration.

Aligning clusters, teams, and projects simpli�es the management of roles and permissions
 (https://cloud.google.com/solutions/prep-kubernetes-engine-for-prod#managing_identity_and_access). In
most cases, Cloud IAM gives you the granularity that you need to manage access to
Kubernetes, and you don't need to con�gure additional role-based access control (RBAC) in
Kubernetes itself.

If, however, you need to share a cluster across teams, the cluster's parent Google Cloud project
must also span multiple teams. In this case, the roles that Cloud IAM provides for managing

https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/
https://cloud.google.com/solutions/prep-kubernetes-engine-for-prod#connecting_to_a_cluster_from_inside_gcp
https://cloud.google.com/iam/
https://cloud.google.com/solutions/prep-kubernetes-engine-for-prod#managing_identity_and_access

1/25/2020 Choose Size and Scope of Google Kubernetes Engine Clusters | Architectures | Google Cloud

https://cloud.google.com/solutions/scope-and-size-kubernetes-engine-clusters 5/6

Google Kubernetes Engine access might not be speci�c enough, requiring additional
(namespace-level) RBAC con�guration managed within Kubernetes itself. Managing RBAC
con�guration in two places, Cloud IAM and Kubernetes, increases administrative complexity, so
it is better to choose to scope the cluster so that you can manage all access control in Cloud
IAM.

Maintenance

Although Google Kubernetes Engine is a fully managed service, you do need to consider a few
maintenance activities:

Picking a Kubernetes version

Picking an upgrade model (manual or scheduled) and maintenance windows

Initiating upgrades

Changing node pool settings

All these activities can affect workloads running on the cluster. If a cluster is shared across
many teams, it can be challenging for teams to agree on when to perform these tasks. To avoid
scheduling issues, limit the number of teams that have a stake in maintenance activities for a
cluster.

Networking

A Google Kubernetes Engine cluster belongs to a single virtual private cloud (VPC) and subnet,
no matter how many node pools it uses. If connectivity requirements dictate that workloads
must run in different VPCs or subnets, then you must create separate clusters, at least one per
VPC or subnet.

Monitoring and logging

Because monitoring and logging con�guration is global in a Google Kubernetes Engine cluster,
run multiple workloads on a single cluster if their logging and monitoring requirements match.

Billing

Google Cloud handles billing on a per-project basis. For workloads that share a single cluster
and, therefore, a single Google Cloud project, it's hard to determine which workload accounts for

1/25/2020 Choose Size and Scope of Google Kubernetes Engine Clusters | Architectures | Google Cloud

https://cloud.google.com/solutions/scope-and-size-kubernetes-engine-clusters 6/6

which share of the overall cost. If you need per-workload billing, use dedicated Google
Kubernetes Engine clusters and Google Cloud projects.

What's next

Find more details in the Google Kubernetes Engine documentation
 (https://cloud.google.com/kubernetes-engine/docs/).

Learn about preparing a Google Kubernetes Engine environment for production
 (https://cloud.google.com/solutions/prep-kubernetes-engine-for-prod).

Try out other Google Cloud Platform features for yourself. Have a look at our tutorials
 (https://cloud.google.com/docs/tutorials).

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License
 (https://creativecommons.org/licenses/by/4.0/), and code samples are licensed under the Apache 2.0 License
 (https://www.apache.org/licenses/LICENSE-2.0). For details, see our Site Policies
 (https://developers.google.com/terms/site-policies). Java is a registered trademark of Oracle and/or its a�liates.

Last updated November 19, 2019.

https://cloud.google.com/kubernetes-engine/docs/
https://cloud.google.com/solutions/prep-kubernetes-engine-for-prod
https://cloud.google.com/docs/tutorials
https://creativecommons.org/licenses/by/4.0/
https://www.apache.org/licenses/LICENSE-2.0
https://developers.google.com/terms/site-policies

