
1/25/2020 Serverless web performance monitoring using Cloud Functions | Solutions | Google Cloud

https://cloud.google.com/solutions/serverless-web-performance-monitoring-using-cloud-functions 1/16

Solutions Solutions

This tutorial describes how to create a web-performance-monitoring app using Google Cloud
Platform (GCP) serverless technologies.

Performance plays a major role
 (https://developers.google.com/web/fundamentals/performance/why-performance-matters/) in the

success of any web app. If your site performs poorly, you might experience fewer sign-ups and
lower user retention, which will probably impact your business goals. Performance should be
a key success criterion when designing, building, and testing your web app.

However, page performance can also change over time as your app evolves. Developers can
add or update images and scripts, or the underlying app serving infrastructure itself can
change. Therefore, it's important to regularly monitor page performance. Typically, you store
the performance metrics to enable historical analysis. It's also common practice to generate
alerts if page performance falls below some de�ned thresholds.

Objectives

Create a Cloud Function (https://cloud.google.com/functions/) that uses headless Chrome to
collect web page performance metrics.

Store the metrics in Cloud Storage (https://cloud.google.com/storage/).

Create another Cloud Function, triggered by the Cloud Storage creation event, to analyze
the page metrics.

Store the analysis results in Cloud Firestore (https://cloud.google.com/�restore/).

 (https://cloud.google.com/solutions/)

Serverless web pe�ormance monitoring using
Cloud Functions

https://cloud.google.com/solutions/
https://cloud.google.com/solutions/
https://developers.google.com/web/fundamentals/performance/why-performance-matters/
https://cloud.google.com/functions/
https://cloud.google.com/storage/
https://cloud.google.com/firestore/

1/25/2020 Serverless web performance monitoring using Cloud Functions | Solutions | Google Cloud

https://cloud.google.com/solutions/serverless-web-performance-monitoring-using-cloud-functions 2/16

Create another Cloud Function, triggered by the Cloud Firestore creation event, to publish
an alert to Cloud Pub/Sub (https://cloud.google.com/pubsub/) if page performance is poor.

Create a Cloud Scheduler (https://cloud.google.com/scheduler/) job to periodically trigger the
�rst Cloud Function.

Verify the outputs for success and for failure scenarios.

Costs

This tutorial uses billable components of Google Cloud Platform, including:

Cloud Functions

Cloud Scheduler

Cloud Storage

Cloud Firestore

Cloud Pub/Sub

Use the pricing calculator
 (https://cloud.google.com/products/calculator/#id=d8864505-8045-462f-804e-4920af970f1d) to
generate a cost estimate based on your projected usage.

Before you begin

1. Sign in (https://accounts.google.com/Login) to your Google Account.

If you don't already have one, sign up for a new account
 (https://accounts.google.com/SignUp).

2. In the Cloud Console, on the project selector page, select or create a Cloud project.

Note: If you don't plan to keep the resources that you create in this procedure, create a project instead

of selecting an existing project. After you �nish these steps, you can delete the project, removing all

resources associated with the project.

GO TO THE PROJECT SELECTOR PAGE (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/PROJECTSELECT

https://cloud.google.com/pubsub/
https://cloud.google.com/scheduler/
https://cloud.google.com/products/calculator/#id=d8864505-8045-462f-804e-4920af970f1d
https://accounts.google.com/Login
https://accounts.google.com/SignUp
https://console.cloud.google.com/projectselector2/home/dashboard

1/25/2020 Serverless web performance monitoring using Cloud Functions | Solutions | Google Cloud

https://cloud.google.com/solutions/serverless-web-performance-monitoring-using-cloud-functions 3/16

3. Make sure that billing is enabled for your Google Cloud project. Learn how to con�rm
billing is enabled for your project (https://cloud.google.com/billing/docs/how-to/modify-project).

4. Enable the Cloud Functions, Cloud Scheduler, and Cloud Pub/Sub APIs.

ENABLE THE APIS (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/FLOWS/ENABLEAPI?APIID=CLOUDFUN

Architecture

Web performance monitoring operations are typically stateless and short-lived. They are also
often event-driven, occurring either on a schedule or triggered as part of some other process,
such as an automated testing pipeline. These characteristics make serverless architectures an
appealing choice for implementing web analysis apps.

In this tutorial, you use various parts of the GCP serverless (https://cloud.google.com/serverless/)

stack, including Cloud Functions, Cloud Firestore, Cloud Scheduler, and Cloud Pub/Sub. You
don't have to manage the infrastructure for any of these services, and you pay only for what
you use. The core of the app is implemented using Cloud Functions, which provides an event-
driven and scalable serverless execution environment. Using Cloud Functions, you can create
and connect apps using independent, loosely coupled pieces of logic.

The following diagram shows the architecture of the serverless solution that you create in this
tutorial.

https://cloud.google.com/billing/docs/how-to/modify-project
https://console.cloud.google.com/flows/enableapi?apiid=cloudfunctions.googleapis.com,cloudscheduler.googleapis.com,pubsub.googleapis.com
https://cloud.google.com/serverless/

1/25/2020 Serverless web performance monitoring using Cloud Functions | Solutions | Google Cloud

https://cloud.google.com/solutions/serverless-web-performance-monitoring-using-cloud-functions 4/16

Cloud Functions

Tracer
Cloud
Storage

Cloud Functions

Analyzer

Cloud Functions

Alerter
Cloud
Pub/Sub

Trigger

Trigger

Trigger

Error?

Cloud
Firestore

Cloud Scheduler

Cron

Preparing the environment

Before you create the serverless environment, you get the code from GitHub, set variables, and
prepare resources you need later for analyzing and storing.

Get the code and set environment variables

1. In the GCP Console, open Cloud Shell.

OPEN CLOUD SHELL (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/?CLOUDSHELL=TRUE)

2. Clone the repository that contains the code for the Cloud Functions used in this tutorial:

3. Change to the functions directory:

git clone https://github.com/GoogleCloudPlatform/solutions-serverless-web-monit

cd solutions-serverless-web-monitoring/functions 

https://console.cloud.google.com/?cloudshell=true

1/25/2020 Serverless web performance monitoring using Cloud Functions | Solutions | Google Cloud

https://cloud.google.com/solutions/serverless-web-performance-monitoring-using-cloud-functions 5/16

4. Set the current project ID and project number as shell variables:

5. Set the default deployment region for Cloud Functions. The following example sets the
region to us-east1, but you can change this to any region where Cloud Functions is
available (https://cloud.google.com/functions/docs/locations).

Create Cloud Storage buckets

In this section, you create a Cloud Storage bucket to store the collected page performance data.
You can choose any location or storage class
 (https://cloud.google.com/storage/docs/storage-classes), but it's a good practice to create buckets in
the same location as the Cloud Functions that will use the buckets.

1. In Cloud Shell, export a shell variable for the names of the Cloud Storage buckets that will
store the metrics. Bucket names must be globally unique, so the following command uses
your GCP project number as a su�x on the bucket name.

2. Use the gsutil tool to create the buckets:

3. Update the env-vars.yaml �le with the bucket names. This �le contains environment
variables that you will pass to the Cloud Functions later.

Create a Cloud Firestore collection

export PROJECT=$DEVSHELL_PROJECT_ID
export PROJECT_NUM=$(gcloud projects list \
 --filter="$PROJECT" \
 --format="value(PROJECT_NUMBER)")



export REGION=us-east1
gcloud config set functions/region $REGION



export METRICS_BUCKET=page-metrics-$PROJECT_NUM 

gsutil mb -l $REGION gs://$METRICS_BUCKET 

sed -i "s/\[YOUR_METRICS_BUCKET\]/$METRICS_BUCKET/" env-vars.yaml 

https://cloud.google.com/functions/docs/locations
https://cloud.google.com/storage/docs/storage-classes

1/25/2020 Serverless web performance monitoring using Cloud Functions | Solutions | Google Cloud

https://cloud.google.com/solutions/serverless-web-performance-monitoring-using-cloud-functions 6/16

In a later section, you analyze the page performance metrics. In this section, you create a Cloud
Firestore collection (https://cloud.google.com/�restore/docs/data-model) to store the results of each
analysis.

1. In the GCP Console, go to the Cloud Firestore page.

GO TO THE CLOUD FIRESTORE PAGE (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/FIRESTORE)

2. If you've never created a Cloud Firestore database before, perform the following steps:

a. Click Select Native mode to activate Cloud Firestore.

b. Select a regional location close to the region where your Cloud Functions will run.

c. Click Create Database.

It takes a few moments to complete the con�guration.

3. Click Start Collection and set the collection ID to page-metrics.

4. Click Save.

Create a Cloud Pub/Sub topic and subscription

Typically you want to notify interested systems and parties if the analysis indicates that a page
is performing poorly. In this section, you create Cloud Pub/Sub topics that will contain
messages that describe any poor performance. we 1. In Cloud Shell, create a Cloud Pub/Sub
topic named performance-alerts:

1. Create a subscription to the topic. You use the subscription to verify that alert messages
are being published to the topic.

Collecting page pe�ormance metrics

```none
gcloud pubsub topics create performance-alerts
```

 

gcloud pubsub subscriptions create performance-alerts-sub \
 --topic performance-alerts



https://cloud.google.com/firestore/docs/data-model
https://console.cloud.google.com/firestore

1/25/2020 Serverless web performance monitoring using Cloud Functions | Solutions | Google Cloud

https://cloud.google.com/solutions/serverless-web-performance-monitoring-using-cloud-functions 7/16

functions/tracer/index.js
 (https://github.com/GoogleCloudPlatform/solutions-serverless-web-
monitoring/blob/master/functions/tracer/index.js)

LATFORM/SOLUTIONS-SERVERLESS-WEB-MONITORING/BLOB/MASTER/FUNCTIONS/TRACER/INDEX.JS)

Many websites use JavaScript to dynamically render page content. This makes performance
analysis more complicated, because the client needs to emulate a browser in order to fully load
the web page. The Node.js 8 runtime for Cloud Functions has support for headless Chrome,
which provides the functionality of a full web browser in a serverless environment.

Puppeteer (https://github.com/GoogleChrome/puppeteer) is a Node.js library built by the Chrome
DevTools team that provides a high-level API to control headless Chrome. By default, Puppeteer
installs a recent version of the browser alongside the library. Therefore, you can add Puppeteer
as a dependency to the Cloud Function as an easy way to use headless Chrome within the
function.

Measuring and analyzing web page performance is a large and complex �eld. For simplicity, in
this tutorial you use Puppeteer to collect some top-level page performance metrics. However,
you can also use Puppeteer and the Chrome DevTools Protocol (CDP)
 (https://chromedevtools.github.io/devtools-protocol/) to collect more detailed information, such as

timeline traces. You can also better represent your end-user experience by emulating network
congestion and performing CPU throttling. For a good introduction to analyzing web page
performance, see the Chrome web developers site
 (https://developers.google.com/web/tools/chrome-devtools/evaluate-performance/).

Note that there are many factors that in�uence web page load times, including the performance
characteristics of the client. It's important to establish baselines using the CPU and RAM
con�gurations of the Cloud Function.

The following snippet from the tracer/index.js �le shows how to use Puppeteer to load the
web page:

// launch Puppeteer and start a Chrome DevTools Protocol (CDP) session
// with performance tracking enabled.
browser = await puppeteer.launch({
 headless: true,
 args: ['--no-sandbox']
});
const page = await browser.newPage();
const client = await page.target().createCDPSession();
await client.send('Performance.enable');

 

https://github.com/GoogleCloudPlatform/solutions-serverless-web-monitoring/blob/master/functions/tracer/index.js
https://github.com/GoogleCloudPlatform/solutions-serverless-web-monitoring/blob/master/functions/tracer/index.js
https://github.com/GoogleChrome/puppeteer
https://chromedevtools.github.io/devtools-protocol/
https://developers.google.com/web/tools/chrome-devtools/evaluate-performance/

1/25/2020 Serverless web performance monitoring using Cloud Functions | Solutions | Google Cloud

https://cloud.google.com/solutions/serverless-web-performance-monitoring-using-cloud-functions 8/16

In Cloud Shell, deploy the trace Cloud Function:

It can take several minutes to deploy the Cloud Function.

The deployment parameters specify that the function should have an HTTP trigger,
should use the Node.js 8 runtime, and should have 1 GB memory. This amount of
memory is required in order to run headless Chrome. Environment variables are supplied
to the function by using the env-vars.yaml �le

By default, HTTP-triggered Cloud Functions allow unauthenticated invocations. Therefore, you
must secure (https://cloud.google.com/functions/docs/securing/) the trace function.

Remove the cloudfunctions.invoker IAM role for allUsers:

Analyzing the metrics

A typical goal of web-performance-monitoring exercises is to track performance against some
de�ned benchmarks. If a particular metric exceeds an expected threshold, it can indicate a
problem with a recent software release, or a problem with the underlying infrastructure.

// browse to the page, capture and write the performance metrics
console.log('Fetching url: '+url.href);
await page.goto(url.href, {
 'waitUntil' : 'networkidle0'
});
const performanceMetrics = await client.send('Performance.getMetrics');
options = createUploadOptions('application/json', page.url());
await writeToGcs(metricsBucket, filename, JSON.stringify(performanceMetrics), option

gcloud functions deploy trace \
 --trigger-http \
 --runtime nodejs8 \
 --memory 1GB \
 --source tracer \
 --env-vars-file env-vars.yaml \
 --quiet



gcloud beta functions remove-iam-policy-binding trace \
 --member allUsers \
 --role roles/cloudfunctions.invoker



https://cloud.google.com/functions/docs/securing/

1/25/2020 Serverless web performance monitoring using Cloud Functions | Solutions | Google Cloud

https://cloud.google.com/solutions/serverless-web-performance-monitoring-using-cloud-functions 9/16

functions/analyzer/main.py
 (https://github.com/GoogleCloudPlatform/solutions-serverless-web-
monitoring/blob/master/functions/analyzer/main.py)

ATFORM/SOLUTIONS-SERVERLESS-WEB-MONITORING/BLOB/MASTER/FUNCTIONS/ANALYZER/MAIN.PY)

In this section, you create a Cloud Function in Python to parse the page metrics and persist the
results to a Cloud Firestore collection. The function evaluates the FirstMeaningfulPaint metric
against an expected threshold, and marks the analysis result as problematic if the threshold is
exceeded. FirstMeaningfulPaint is a user-centric metric
 (https://developers.google.com/web/fundamentals/performance/user-centric-performance-metrics) that
broadly describes when a page becomes useful to the user. You use a Cloud Storage trigger to
execute the analysis function whenever a new �le is written to the bucket that contains the
metrics.

The following snippet from the analyzer/main.py �le shows the function logic:

Deploy the analyze Cloud Function:

def analyze(data, context):
 """Function entry point, triggered by creation of an object in a GCS bucket.

 The function reads the content of the triggering file, analyses its contents,
 and persists the results of the analysis to a new Firestore document.

 Args:
 data (dict): The trigger event payload.
 context (google.cloud.functions.Context): Metadata for the event.
 """
 page_metrics = get_gcs_file_contents(data)
 max_time_meaningful_paint = int(os.environ.get('MAX_TIME_MEANINGFUL_PAINT'))
 analysis_result = analyze_metrics(data, page_metrics,
 max_time_meaningful_paint)
 docref = persist(analysis_result, data['name'])
 logging.info('Created new Firestore document %s/%s describing analysis of %s',
 docref.parent.id, docref.id, analysis_result['input_file'])

 

gcloud functions deploy analyze \
 --trigger-resource gs://$METRICS_BUCKET \
 --trigger-event google.storage.object.finalize \
 --runtime python37 \
 --source analyzer \
 --env-vars-file env-vars.yaml



https://github.com/GoogleCloudPlatform/solutions-serverless-web-monitoring/blob/master/functions/analyzer/main.py
https://github.com/GoogleCloudPlatform/solutions-serverless-web-monitoring/blob/master/functions/analyzer/main.py
https://developers.google.com/web/fundamentals/performance/user-centric-performance-metrics

1/25/2020 Serverless web performance monitoring using Cloud Functions | Solutions | Google Cloud

https://cloud.google.com/solutions/serverless-web-performance-monitoring-using-cloud-functions 10/16

functions/alerter/main.py
 (https://github.com/GoogleCloudPlatform/solutions-serverless-web-
monitoring/blob/master/functions/alerter/main.py)

LATFORM/SOLUTIONS-SERVERLESS-WEB-MONITORING/BLOB/MASTER/FUNCTIONS/ALERTER/MAIN.PY)

The function is triggered by a finalize event in the metrics bucket, which is sent every
time an object is created in the bucket. The function uses the Python 3.7 runtime.

Ale�ing on failures

Typically, you want to take action if the metrics analysis indicates a poorly performing page.

In this section, you create a Cloud Function to send a message to a Cloud Pub/Sub topic if
page performance is unsatisfactory. The function is triggered every time a document is created
in the Cloud Firestore collection. Interested parties can subscribe to the Cloud Pub/Sub topic
and take appropriate action. For example, a support app could subscribe to the Cloud Pub/Sub
messages and send an email, trigger a support pager, or open a bug.

The following snippet from the alerter/main.py �le shows the function logic:

def generate_alert(data, context):
 """Cloud Function entry point, triggered by a change to a Firestore document.

 If the triggering document indicates a Failed status, send the document to
 configured PubSub topic.

 Args:
 data (dict): The event payload.
 context (google.cloud.functions.Context): Metadata for the event.
 """
 doc_fields = data['value']['fields']
 status = doc_fields['status']['stringValue']
 if 'FAIL' in status:
 global publish_client
 if not publish_client:
 publish_client = pubsub.PublisherClient()

 logging.info('Sending alert in response to %s status in document %s',
 status, context.resource)
 project = os.environ.get('GCP_PROJECT')
 topic = os.environ.get('ALERT_TOPIC')

 

https://github.com/GoogleCloudPlatform/solutions-serverless-web-monitoring/blob/master/functions/alerter/main.py
https://github.com/GoogleCloudPlatform/solutions-serverless-web-monitoring/blob/master/functions/alerter/main.py

1/25/2020 Serverless web performance monitoring using Cloud Functions | Solutions | Google Cloud

https://cloud.google.com/solutions/serverless-web-performance-monitoring-using-cloud-functions 11/16

Notice that the alert is sent only if the status �eld indicates a failure.

Deploy the alert Cloud Function:

The function is triggered by a document.create event in the page-metrics Cloud Firestore
collection. The {any} su�x is a wildcard indicating that the function should be triggered
any time a document is created in the collection.

Scheduling the analysis

It's good practice to regularly monitor page performance. For example, you might want to
analyze a certain page every hour, every day, or every week. In this section, you create a Cloud
Scheduler job to periodically run the the analysis pipeline by triggering the trace function.

The Cloud Scheduler job is executed using a service account that's been granted the required
cloudfunctions.invoker IAM role for the trace function.

Sometimes web pages don't respond correctly, or requests time out, so retries are unavoidable
with web analysis apps. It's therefore important to have retry logic in your app. Cloud Functions
supports retries for background functions
 (https://cloud.google.com/functions/docs/writing/background).

Retries are not available for HTTP-triggered Cloud Functions, so you can't use Cloud Functions
to retry the trace function. However, Cloud Scheduler supports retries. For more information on
con�guring retry parameters, see the RetryCon�g
 (https://cloud.google.com/scheduler/docs/reference/rest/v1/projects.locations.jobs#RetryCon�g)

documentation.

 fqtn = 'projects/{}/topics/{}'.format(project, topic)
 msg = json.dumps(data['value']).encode('utf-8')
 publish_client.publish(fqtn, msg)

gcloud functions deploy alert \
 --trigger-event providers/cloud.firestore/eventTypes/document.create \
 --trigger-resource "projects/$PROJECT/databases/(default)/documents/page-me
 --runtime python37 \
 --source alerter \
 --env-vars-file env-vars.yaml \
 --entry-point generate_alert



https://cloud.google.com/functions/docs/writing/background
https://cloud.google.com/scheduler/docs/reference/rest/v1/projects.locations.jobs#RetryConfig

1/25/2020 Serverless web performance monitoring using Cloud Functions | Solutions | Google Cloud

https://cloud.google.com/solutions/serverless-web-performance-monitoring-using-cloud-functions 12/16

1. Verify that the three Cloud Functions have been correctly deployed and are showing
ACTIVE status:

2. Create a new service account that will be used as the identity for executing the Cloud
Scheduler job:

3. Grant the new service account the cloudfunctions.invoker IAM role for the trace
function:

4. Create a Cloud Scheduler job:

Because the job will call the HTTP-triggered trace function, the command speci�es the
job type as http, and supplies the function trigger URL as the uri value. The page to
analyze, in this case www.example.com, is provided in the message-body �ag. The oidc-
service-account-email �ag de�nes the service account to use for authentication. The
command indicates the number of retries to attempt using the max-retry-attempts �ag,
and the value passed with the schedule �ag sets the run schedule to 3:00 AM UTC every
day.

Verifying results

gcloud functions list 

gcloud iam service-accounts create tracer-job-sa 

gcloud beta functions add-iam-policy-binding trace \
 --role roles/cloudfunctions.invoker \
 --member "serviceAccount:tracer-job-sa@$PROJECT.iam.gserviceaccount.com"



gcloud scheduler jobs create http traceWithRetry \
 --uri="https://$REGION-$PROJECT.cloudfunctions.net/trace" \
 --http-method=POST \
 --message-body="{\"url\":\"http://www.example.com\"}" \
 --headers="Content-Type=application/json" \
 --oidc-service-account-email="tracer-job-sa@$PROJECT.iam.gserviceaccount.co
 --schedule="0 3 * * *" \
 --time-zone="UTC" \
 --max-retry-attempts=3 \
 --min-backoff=30s



1/25/2020 Serverless web performance monitoring using Cloud Functions | Solutions | Google Cloud

https://cloud.google.com/solutions/serverless-web-performance-monitoring-using-cloud-functions 13/16

In this section, you verify that you get the expected behavior for both success and failure
conditions.

Verify success

The Cloud Scheduler job won't run until the next scheduled time, which in this case is 3:00 AM
UTC. To see the results immediately, you can manually trigger a run.

1. Wait 90 seconds for the scheduler job to �nish initializing.

2. Run the Cloud Scheduler job manually:

3. Wait about 30 seconds for the function pipeline to complete.

4. List the contents of the metrics bucket to show that page metrics have been collected:

5. In the GCP Console, open the Stackdriver Logging viewer page:

GO TO THE LOGGING PAGE (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/LOGS/VIEWER?RESOURCE=C

You see log messages from each of the three Cloud Functions: trace, analyze, and alert.
It can take a few moments for the logs to �ow through, so you might need to refresh to
the logs pane.

gcloud scheduler jobs run traceWithRetry 

gsutil ls -l gs://$METRICS_BUCKET 

https://console.cloud.google.com/logs/viewer?resource=cloud_function

1/25/2020 Serverless web performance monitoring using Cloud Functions | Solutions | Google Cloud

https://cloud.google.com/solutions/serverless-web-performance-monitoring-using-cloud-functions 14/16

6. Make a note of the Cloud Firestore document ID, which is listed following the text Created
new Firestore document page-metrics/

7. In the GCP Console, go to the Cloud Firestore page:

GO TO THE CLOUD FIRESTORE PAGE (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/FIRESTORE/DATA/)

8. Inspect the document that contains results of the analysis. The document values indicate
a PASS status and contain the latest page performance metrics.

9. In Cloud Shell, verify that no alert messages have been sent to the Cloud Pub/Sub topic
by trying to pull a message off the subscription:

You see no items listed.

Verify failure

1. Manually trigger the trace function. This time, you provide the GCP Tutorials
 (https://cloud.google.com/docs/tutorials) page as the URL. This page has a lot of dynamic
content that increases the page load time over the expected maximum threshold.

Because you have project the Owner or Editor IAM role, you have su�cient permissions to
invoke the function.

2. Wait about 30 seconds for the function pipeline to complete.

3. List the contents of the metrics bucket to verify that additional metrics have been
collected:

You now see two items in each bucket.

4. In the GCP Console, go to the Stackdriver Logging viewer page and �lter for the Cloud
Function logs:

gcloud pubsub subscriptions pull \
 projects/$PROJECT/subscriptions/performance-alerts-sub \
 --auto-ack



gcloud functions call trace \
 --data='{"url":"https://cloud.google.com/docs/tutorials"}'



gsutil ls -l gs://$METRICS_BUCKET 

https://console.cloud.google.com/firestore/data/
https://cloud.google.com/docs/tutorials

1/25/2020 Serverless web performance monitoring using Cloud Functions | Solutions | Google Cloud

https://cloud.google.com/solutions/serverless-web-performance-monitoring-using-cloud-functions 15/16

GO TO THE LOGGING PAGE (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/LOGS/VIEWER?RESOURCE=C

You see an error from the analyze function indicating that the page exceeded the
maximum allowed load time. Again, you might need to refresh the logs pane to see the
latest messages.

5. Make a note of the Cloud Firestore document ID.

6. In the GCP Console, go to the Cloud Firestore page:

GO TO THE CLOUD FIRESTORE PAGE (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/FIRESTORE/DATA/)

7. Find the document that describes the failed analysis.

The status �eld is marked as FAIL.

8. In Cloud Shell, verify that an alert message was sent to the Cloud Pub/Sub topic by
pulling a message off the subscription.

This time, you see the contents of the message.

Cleaning up

gcloud pubsub subscriptions pull \
 projects/$PROJECT/subscriptions/performance-alerts-sub \
 --auto-ack



https://console.cloud.google.com/logs/viewer?resource=cloud_function
https://console.cloud.google.com/firestore/data/

1/25/2020 Serverless web performance monitoring using Cloud Functions | Solutions | Google Cloud

https://cloud.google.com/solutions/serverless-web-performance-monitoring-using-cloud-functions 16/16

Delete the project

Caution: Deleting a project has the following effects:

Everything in the project is deleted. If you used an existing project for this tutorial, when you

delete it, you also delete any other work you've done in the project.

Custom project IDs are lost. When you created this project, you might have created a custom

project ID that you want to use in the future. To preserve the URLs that use the project ID, such

as an appspot.com URL, delete selected resources inside the project instead of deleting the

whole project.

1. In the Cloud Console, go to the Manage resources page.

GO TO THE MANAGE RESOURCES PAGE (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/IAM-ADMIN/PRO

2. In the project list, select the project you want to delete and click Delete .

3. In the dialog, type the project ID, and then click Shut down to delete the project.

What's next

Learn more about GCP serverless (https://cloud.google.com/serverless/) technologies.

Explore other Cloud Functions tutorials (https://cloud.google.com/functions/docs/tutorials/).

Watch the video (https://youtu.be/lhZOFUY1weo) from Google I/O '18 that describes other
uses for Puppeteer and headless Chrome.

Try out other Google Cloud Platform features for yourself. Have a look at our tutorials
 (https://cloud.google.com/docs/tutorials).

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License
 (https://creativecommons.org/licenses/by/4.0/), and code samples are licensed under the Apache 2.0 License
 (https://www.apache.org/licenses/LICENSE-2.0). For details, see our Site Policies
 (https://developers.google.com/terms/site-policies). Java is a registered trademark of Oracle and/or its a�liates.

Last updated November 12, 2019.

https://console.cloud.google.com/iam-admin/projects
https://cloud.google.com/serverless/
https://cloud.google.com/functions/docs/tutorials/
https://youtu.be/lhZOFUY1weo
https://cloud.google.com/docs/tutorials
https://creativecommons.org/licenses/by/4.0/
https://www.apache.org/licenses/LICENSE-2.0
https://developers.google.com/terms/site-policies

