
1/25/2020 Streaming data from Cloud Storage into BigQuery using Cloud Functions | Solutions | Google Cloud

https://cloud.google.com/solutions/streaming-data-from-cloud-storage-into-bigquery-using-cloud-functions 1/20

Solutions Solutions

This tutorial demonstrates how to stream new objects from a Cloud Storage
 (https://cloud.google.com/products/storage/) bucket into BigQuery
 (https://cloud.google.com/bigquery/) by using Cloud Functions (https://cloud.google.com/functions/)

. Cloud Functions is a Google Cloud event-driven, serverless compute platform, which provides
automatic scaling, high availability, and fault tolerance with no servers to provision, manage,
update, or patch. Stream data through Cloud Functions to let you connect and extend other
Google Cloud services while paying only when your app is running.

This article is for data analysts, developers, or operators, who need to run near real-time
analysis on �les added to Cloud Storage. The article assumes you are familiar with Linux,
Cloud Storage, and BigQuery.

Architecture

The following architecture diagram illustrates all components and the entire �ow of this
tutorial's streaming pipeline. Although this pipeline expects you to upload JSON �les into
Cloud Storage, minor code changes are required to support other �le formats. The ingestion of
other �le formats isn't covered in this article.

 (https://cloud.google.com/solutions/)

Streaming data from Cloud Storage into
BigQuery using Cloud Functions

https://cloud.google.com/solutions/
https://cloud.google.com/solutions/
https://cloud.google.com/products/storage/
https://cloud.google.com/bigquery/
https://cloud.google.com/functions/

1/25/2020 Streaming data from Cloud Storage into BigQuery using Cloud Functions | Solutions | Google Cloud

https://cloud.google.com/solutions/streaming-data-from-cloud-storage-into-bigquery-using-cloud-functions 2/20

Cloud Storage bucket

FILES_SOURCE (Regional)

Cloud Storage bucket

FILES_ERROR (Regional)

Cloud Storage bucket

FILES_SUCCESS (Coldline)

JSON file

Upload files
to Cloud Storage

1

Trigger
Cloud Function

2

Move the file to
FILES_ERROR bucket

6

Move the file to
FILES_SUCCESS bucket

6

Cloud Functions

streaming_error

Cloud Functions

streaming_success

Cloud Pub/Sub

streaming_success_topic

Cloud Pub/Sub

streaming_error_topic

BigQuery

Cloud
Firestore

Stream insert
into BigQuery

3

Log ingestion
status into
Cloud Firestore

4

Publish a message
based on streaming
result code

5

Cloud Functions

streaming

In the preceding diagram, the pipeline consists of the following steps:

1. JSON �les are uploaded to the FILES_SOURCE Cloud Storage bucket.

2. This event triggers the streaming Cloud Function.

3. Data is parsed and inserted into BigQuery.

4. The ingestion status is logged into Firestore (https://cloud.google.com/�restore/) and
Stackdriver Logging (https://cloud.google.com/logging/).

5. A message is published in one of the following Pub/Sub
 (https://cloud.google.com/pubsub/) topics:

streaming_success_topic

streaming_error_topic

6. Depending on the results, Cloud Functions moves the JSON �le from the FILES_SOURCE
bucket to one of the following buckets:

FILES_ERROR

FILES_SUCCESS

https://cloud.google.com/firestore/
https://cloud.google.com/logging/
https://cloud.google.com/pubsub/

1/25/2020 Streaming data from Cloud Storage into BigQuery using Cloud Functions | Solutions | Google Cloud

https://cloud.google.com/solutions/streaming-data-from-cloud-storage-into-bigquery-using-cloud-functions 3/20

Objectives

Create a Cloud Storage bucket to store your JSON �les.

Create a BigQuery dataset and table to stream your data in to.

Con�gure a Cloud Function to trigger whenever �les are added to your bucket.

Set up Pub/Sub topics.

Con�gure additional functions to handle function output.

Test your streaming pipeline.

Con�gure Stackdriver Monitoring to alert on any unexpected behaviours.

Costs

This tutorial uses the following billable components of Google Cloud:

Cloud Storage

Cloud Functions

Firestore

BigQuery

Logging

Monitoring

To generate a cost estimate based on your projected usage, use the pricing calculator
 (https://cloud.google.com/products/calculator). New Google Cloud users might be eligible for a free
trial (https://cloud.google.com/free-trial).

Before you begin

1. Sign in (https://accounts.google.com/Login) to your Google Account.

If you don't already have one, sign up for a new account
 (https://accounts.google.com/SignUp).

2. In the Cloud Console, on the project selector page, select or create a Cloud project.

https://cloud.google.com/products/calculator
https://cloud.google.com/free-trial
https://accounts.google.com/Login
https://accounts.google.com/SignUp

1/25/2020 Streaming data from Cloud Storage into BigQuery using Cloud Functions | Solutions | Google Cloud

https://cloud.google.com/solutions/streaming-data-from-cloud-storage-into-bigquery-using-cloud-functions 4/20

Note: If you don't plan to keep the resources that you create in this procedure, create a project instead

of selecting an existing project. After you �nish these steps, you can delete the project, removing all

resources associated with the project.

GO TO THE PROJECT SELECTOR PAGE (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/PROJECTSELECT

3. Make sure that billing is enabled for your Google Cloud project. Learn how to con�rm
billing is enabled for your project (https://cloud.google.com/billing/docs/how-to/modify-project).

4. Enable the Cloud Functions API.

ENABLE THE API (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/FLOWS/ENABLEAPI?APIID=CLOUDFUNC

5. In the Cloud Console, go to Monitoring.

GO TO STACKDRIVER MONITORING (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/MONITORING)

A Workspace is created automatically for you, if you don't have any existing Workspaces.
Otherwise, you have the option to create a new Workspace, or add your project to an
existing Workspace.

When you �nish this tutorial, you can avoid continued billing by deleting the resources you
created. For more information, see Cleaning up (#clean-up).

Se�ing up your environment

In this tutorial, you use Cloud Shell (https://cloud.google.com/shell/docs/overview) to enter
commands. Cloud Shell gives you access to the command line in the Cloud Console, and
includes the Cloud SDK and other tools that you need to develop in Google Cloud. Cloud Shell
appears as a window at the bottom of the Cloud Console. It can take several minutes to
initialize, but the window appears immediately.

To use Cloud Shell to set up your environment and to clone the git repository used in this
tutorial:

1. In the Cloud Console, open Cloud Shell.

OPEN CLOUD SHELL (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/?CLOUDSHELL=TRUE)

2. Make sure you are working in the project you just created. Replace [YOUR_PROJECT_ID]
with your newly created Google Cloud project.

https://console.cloud.google.com/projectselector2/home/dashboard
https://cloud.google.com/billing/docs/how-to/modify-project
https://console.cloud.google.com/flows/enableapi?apiid=cloudfunctions.googleapis.com
https://console.cloud.google.com/monitoring
https://cloud.google.com/shell/docs/overview
https://console.cloud.google.com/?cloudshell=true

1/25/2020 Streaming data from Cloud Storage into BigQuery using Cloud Functions | Solutions | Google Cloud

https://cloud.google.com/solutions/streaming-data-from-cloud-storage-into-bigquery-using-cloud-functions 5/20

3. Set the default compute zone. For the purposes of this tutorial, it is us-east1. If you are
deploying to a production environment, deploy to a region of your choice
 (https://cloud.google.com/about/locations/#products-available-by-location).

4. Clone the repository containing the functions used in this tutorial.

Creating streaming source and destination sinks

To stream content into BigQuery, you need to have a FILES_SOURCE Cloud Storage bucket and a
destination table in BigQuery.

Create the Cloud Storage bucket

You create a Cloud Storage bucket that represents the source of the streaming pipeline
presented in this tutorial. The main goal of this bucket is to temporarily store JSON �les that
are streamed into BigQuery.

Create your FILES_SOURCE Cloud Storage bucket, where FILES_SOURCE is set up as an
environment variable with a unique name.

Create the BigQuery table

This section creates a BigQuery table which is used as the content destination for your �les.
BigQuery lets you specify the table's schema when you load data into the table or when you
create a new table. In this section, you create the table and specify its schema at the same time.

gcloud config set project [YOUR_PROJECT_ID]  

REGION=us-east1  

git clone https://github.com/GoogleCloudPlatform/solutions-gcs-bq-streaming-fun
cd solutions-gcs-bq-streaming-functions-python

 

FILES_SOURCE=${DEVSHELL_PROJECT_ID}-files-source-$(date +%s)
gsutil mb -c regional -l ${REGION} gs://${FILES_SOURCE}

 

https://cloud.google.com/about/locations/#products-available-by-location

1/25/2020 Streaming data from Cloud Storage into BigQuery using Cloud Functions | Solutions | Google Cloud

https://cloud.google.com/solutions/streaming-data-from-cloud-storage-into-bigquery-using-cloud-functions 6/20

1. Create a BigQuery dataset and table. The schema de�ned in the schema.json �le must
match the schema of the �les coming from the FILES_SOURCEbucket.

2. Verify that the table was created.

The output is:

Streaming data into BigQuery

Now that you created the source and destination sinks, you create the Cloud Function to stream
data from Cloud Storage into BigQuery.

Set up the streaming Cloud Function

The streaming function listens for new �les added to the FILES_SOURCE bucket and then triggers
a process which does the following:

Parses and validates the �le.

Checks for duplications.

Inserts the �le's content into BigQuery.

Logs the ingestion status in Firestore and Logging.

Publishes a message to either an error or success topic in Pub/Sub.

To deploy the function:

bq mk mydataset
bq mk mydataset.mytable schema.json

 

bq ls --format=pretty mydataset  

+---------+-------+--------+-------------------+
| tableId | Type | Labels | Time Partitioning |
+---------+-------+--------+-------------------+
| mytable | TABLE | | |
+---------+-------+--------+-------------------+



1/25/2020 Streaming data from Cloud Storage into BigQuery using Cloud Functions | Solutions | Google Cloud

https://cloud.google.com/solutions/streaming-data-from-cloud-storage-into-bigquery-using-cloud-functions 7/20

1. Create a Cloud Storage bucket to stage your functions during deployment where
FUNCTIONS_BUCKET is set up as an environment variable with a unique name.

2. Deploy your streaming function. The implementation code is in the
./functions/streaming folder. It might take a few minutes to �nish.

This code deploys a Cloud Function written in Python, which is named streaming. It is
triggered whenever a �le is added to your FILES_SOURCE bucket.

3. Verify that the function was deployed.

The output is:

4. Provision a Pub/Sub topic, called streaming_error_topic, to handle the error path.

5. Provision a Pub/Sub topic, called streaming_success_topic, to handle the success path.

FUNCTIONS_BUCKET=${DEVSHELL_PROJECT_ID}-functions-$(date +%s)
gsutil mb -c regional -l ${REGION} gs://${FUNCTIONS_BUCKET}

 

gcloud functions deploy streaming --region=${REGION} \
 --source=./functions/streaming --runtime=python37 \
 --stage-bucket=${FUNCTIONS_BUCKET} \
 --trigger-bucket=${FILES_SOURCE}

 

gcloud functions describe streaming --region=${REGION} \
 --format="table[box](entryPoint, status, eventTrigger.eventType)"

 

┌────────────────┬────────┬────────────────────────────────┐
│ ENTRY_POINT │ STATUS │ EVENT_TYPE │
├────────────────┼────────┼────────────────────────────────┤
│ streaming │ ACTIVE │ google.storage.object.finalize │
└────────────────┴────────┴────────────────────────────────┘



STREAMING_ERROR_TOPIC=streaming_error_topic
gcloud pubsub topics create ${STREAMING_ERROR_TOPIC}

 

STREAMING_SUCCESS_TOPIC=streaming_success_topic
gcloud pubsub topics create ${STREAMING_SUCCESS_TOPIC}

 

1/25/2020 Streaming data from Cloud Storage into BigQuery using Cloud Functions | Solutions | Google Cloud

https://cloud.google.com/solutions/streaming-data-from-cloud-storage-into-bigquery-using-cloud-functions 8/20

Set up your Firestore database

While data is streamed into BigQuery it is important to understand what is happening with each
�le ingestion. For example, suppose you have �les that were improperly imported. In this case,
you need to �gure out the root cause of the problem and �x it to avoid generating corrupted
data and inaccurate reports at the end of your pipeline. The streaming function, deployed in the
previous section, stores the �le ingestion status in Firestore documents so you can query recent
errors to troubleshoot any issues.

To create your Firestore instance, follow these steps:

1. In the Google Cloud console, go to Firestore.

GO TO THE FIRESTORE PAGE (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/FIRESTORE/WELCOME)

2. In the Choose a Cloud Firestore mode window, click Select Native Mode.

3. In the Select a location list, select nam5 (United States), and then click Create Database.
Wait for the Firestore initialization to �nish. It usually takes a few minutes.

Handle streaming errors

To provision a path to handle error �les, you deploy another Cloud Function, which listens for
messages published to streaming_error_topic. Your business needs determine how you
handle such errors in a production environment. For the purpose of this tutorial, problematic
�les are moved to another Cloud Storage bucket to facilitate troubleshooting.

1. Create your Cloud Storage bucket to store problematic �les. FILES_ERROR is set up as an
environment variable with a unique name for the bucket that stores error �les.

2. Deploy streaming_error function to handle errors. It might take a few minutes.

FILES_ERROR=${DEVSHELL_PROJECT_ID}-files-error-$(date +%s)
gsutil mb -c regional -l ${REGION} gs://${FILES_ERROR}

 

gcloud functions deploy streaming_error --region=${REGION} \
 --source=./functions/move_file \
 --entry-point=move_file --runtime=python37 \
 --stage-bucket=${FUNCTIONS_BUCKET} \
 --trigger-topic=${STREAMING_ERROR_TOPIC} \
 --set-env-vars SOURCE_BUCKET=${FILES_SOURCE},DESTINATION_BUCKET=${FILES_ERR

 

https://console.cloud.google.com/firestore/welcome

1/25/2020 Streaming data from Cloud Storage into BigQuery using Cloud Functions | Solutions | Google Cloud

https://cloud.google.com/solutions/streaming-data-from-cloud-storage-into-bigquery-using-cloud-functions 9/20

This command is similar to the command to deploy the streaming function. The main
difference is that in this command the function is triggered by a message published to a
topic, and it receives two environment variables: the SOURCE_BUCKET variable, where �les
are copied from, and the DESTINATION_BUCKET variable, where �les are copied to.

3. Verify that the streaming_error function was created.

The output is:

Handle successful streaming

To provision a path to handle success �les, you deploy a third Cloud Function, which listens for
published messages to the streaming_success_topic. For the purposes of this tutorial,
successfully ingested �les are archived in a Coldline Cloud Storage bucket.

1. Create your Coldline Cloud Storage bucket. FILES_SUCCESSis set up as an environment
variable with a unique name for the bucket that stores success �les.

2. Deploy streaming_success function to handle success. It might take a few minutes.

3. Verify that the function was created.

gcloud functions describe streaming_error --region=${REGION} \
 --format="table[box](entryPoint, status, eventTrigger.eventType)"

 

┌─────────────┬────────┬─────────────────────────────┐
│ ENTRY_POINT │ STATUS │ EVENT_TYPE │
├─────────────┼────────┼─────────────────────────────┤
│ move_file │ ACTIVE │ google.pubsub.topic.publish │
└─────────────┴────────┴─────────────────────────────┘



FILES_SUCCESS=${DEVSHELL_PROJECT_ID}-files-success-$(date +%s)
gsutil mb -c coldline -l ${REGION} gs://${FILES_SUCCESS}

 

gcloud functions deploy streaming_success --region=${REGION} \
 --source=./functions/move_file \
 --entry-point=move_file --runtime=python37 \
 --stage-bucket=${FUNCTIONS_BUCKET} \
 --trigger-topic=${STREAMING_SUCCESS_TOPIC} \
 --set-env-vars SOURCE_BUCKET=${FILES_SOURCE},DESTINATION_BUCKET=${FILES_SUC

 

1/25/2020 Streaming data from Cloud Storage into BigQuery using Cloud Functions | Solutions | Google Cloud

https://cloud.google.com/solutions/streaming-data-from-cloud-storage-into-bigquery-using-cloud-functions 10/20

The output is:

Testing your streaming pipeline

At this point, you have �nished creating your streaming pipeline. Now it is time to test different
paths. First, you test the ingestion of new �les, then the ingestion of duplication �les, and
�nally, the ingestion of problematic �les.

Ingest new �les

To test the ingestion of new �les, you upload a �le which must successfully pass through the
entire pipeline. To make sure everything is behaving correctly, you need to check all storage
pieces: BigQuery, Firestore, and Cloud Storage buckets.

1. Upload the data.json �le to the FILES_SOURCE bucket.

The output:

2. Query your data in BigQuery.

This command outputs the contents of the data.json �le:

gcloud functions describe streaming_success --region=${REGION} \
 --format="table[box](entryPoint, status, eventTrigger.eventType)"

 

┌─────────────┬────────┬─────────────────────────────┐
│ ENTRY_POINT │ STATUS │ EVENT_TYPE │
├─────────────┼────────┼─────────────────────────────┤
│ move_file │ ACTIVE │ google.pubsub.topic.publish │
└─────────────┴────────┴─────────────────────────────┘



gsutil cp test_files/data.json gs://${FILES_SOURCE}  

Operation completed over 1 objects/312.0 B. 

bq query 'select first_name, last_name, dob from mydataset.mytable'  

1/25/2020 Streaming data from Cloud Storage into BigQuery using Cloud Functions | Solutions | Google Cloud

https://cloud.google.com/solutions/streaming-data-from-cloud-storage-into-bigquery-using-cloud-functions 11/20

3. In the Cloud Console, go to the Firestore page.

GO TO THE FIRESTORE PAGE (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/FIRESTORE/DATA)

4. Go to the / > streaming_�les > data.json document to verify that the success: true �eld is
there. The streaming function is storing the �le's status in a collection called
streaming_�les and uses the �le name as the document ID.

5. Go back to Cloud Shell.

GO TO CLOUD SHELL (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/?CLOUDSHELL=TRUE)

6. Verify that the ingested �le was removed from the FILES_SOURCE bucket by the
streaming_success function.

The output is a CommandException because the �le doesn't exist in the FILES_SOURCE
bucket anymore.

7. Verify that the ingested �le is now in FILES_SUCCESS bucket.

The output is:

+------------+-----------+------------+
| first_name | last_name | dob |
+------------+-----------+------------+
| John | Doe | 1968-01-22 |
+------------+-----------+------------+



gsutil ls -l gs://${FILES_SOURCE}/data.json  

gsutil ls -l gs://${FILES_SUCCESS}/data.json  

TOTAL: 1 objects, 312 bytes. 

https://console.cloud.google.com/firestore/data
https://console.cloud.google.com/?cloudshell=true

1/25/2020 Streaming data from Cloud Storage into BigQuery using Cloud Functions | Solutions | Google Cloud

https://cloud.google.com/solutions/streaming-data-from-cloud-storage-into-bigquery-using-cloud-functions 12/20

Ingest already processed �les

The �le name is used as document ID in Firestore. This makes it easy for the streaming
function to query if a given �le was processed or not. If a �le was previously successfully
ingested, any new attempts to add the �le are ignored because it would duplicate information in
BigQuery, and result in inaccurate reports.

Note: To mitigate duplications, we recommend providing an insertId for each inserted row when streaming

data into BigQuery. (https://cloud.google.com/bigquery/streaming-data-into-bigquery#dataconsistency)

BigQuery remembers this ID for at least one minute, which works well for retries. If your system might

produce a �le with the same name in a larger than one minute interval, you must have another mechanism to

ensure deduplication, such as Firestore.

In this section you verify that the pipeline is working as expected when duplicate �les are
uploaded to the FILES_SOURCE bucket.

1. Upload the same data.json �le to the FILES_SOURCE bucket again.

The output is:

2. Querying BigQuery returns the same result as before. Meaning that the pipeline processed
the �le, but it didn't insert its content into BigQuery because it was ingested before.

The output is:

3. In the Cloud Console, go to thee Firestore page.

gsutil cp test_files/data.json gs://${FILES_SOURCE}  

Operation completed over 1 objects/312.0 B. 

bq query 'select first_name, last_name, dob from mydataset.mytable'  

+------------+-----------+------------+
| first_name | last_name | dob |
+------------+-----------+------------+
| John | Doe | 1968-01-22 |
+------------+-----------+------------+



https://cloud.google.com/bigquery/streaming-data-into-bigquery#dataconsistency

1/25/2020 Streaming data from Cloud Storage into BigQuery using Cloud Functions | Solutions | Google Cloud

https://cloud.google.com/solutions/streaming-data-from-cloud-storage-into-bigquery-using-cloud-functions 13/20

GO TO THE FIRESTORE PAGE (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/FIRESTORE/DATA)

4. In the / > streaming_�les > data.json document, verify that the new
duplication_attempts �eld is added.

Each time a �le is added to the FILES_SOURCE bucket with the same name as one
previously successfully processed, the content of the �le is ignored and a new duplication
attempt is appended to the **duplication_attempts** �eld in Firestore.

5. Go back to Cloud Shell.

GO TO CLOUD SHELL (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/?CLOUDSHELL=TRUE)

6. Verify that the duplicate �le is still in the FILES_SOURCE bucket.

The output is:

In the duplication scenario, the streaming function logs the unexpected behaviour in
Logging, ignores the ingestion, and leaves the �le in the FILES_SOURCE bucket for later
analysis.

Ingest �les with errors

Now that you have con�rmed that your streaming pipeline is working and that duplications
aren't ingested into BigQuery, it's time to check the error path.

1. Upload data_error.json to the FILES_SOURCE bucket.

gsutil ls -l gs://${FILES_SOURCE}/data.json  

TOTAL: 1 objects, 312 bytes. 

https://console.cloud.google.com/firestore/data
https://console.cloud.google.com/?cloudshell=true

1/25/2020 Streaming data from Cloud Storage into BigQuery using Cloud Functions | Solutions | Google Cloud

https://cloud.google.com/solutions/streaming-data-from-cloud-storage-into-bigquery-using-cloud-functions 14/20

The output is:

2. Querying BigQuery returns the same result as before. This means that the pipeline
processed the �le, but it didn't insert the content into BigQuery because it doesn't comply
with the expected schema.

The output is:

3. In the Cloud Console, go to the Firestore page.

GO TO THE FIRESTORE PAGE (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/FIRESTORE/DATA)

4. In the / > streaming_�les > data_error.json document, verify that the success: false �eld
is added.

For �les with errors, the streaming function also stores an error_message �eld, which
gives you detailed information about why the �le wasn't ingested.

5. Go back to Cloud Shell.

GO TO CLOUD SHELL (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/?CLOUDSHELL=TRUE)

gsutil cp test_files/data_error.json gs://${FILES_SOURCE}  

Operation completed over 1 objects/311.0 B. 

bq query 'select first_name, last_name, dob from mydataset.mytable'  

+------------+-----------+------------+
| first_name | last_name | dob |
+------------+-----------+------------+
| John | Doe | 1968-01-22 |
+------------+-----------+------------+



https://console.cloud.google.com/firestore/data
https://console.cloud.google.com/?cloudshell=true

1/25/2020 Streaming data from Cloud Storage into BigQuery using Cloud Functions | Solutions | Google Cloud

https://cloud.google.com/solutions/streaming-data-from-cloud-storage-into-bigquery-using-cloud-functions 15/20

�restore/show_streaming_errors.py
 (https://github.com/GoogleCloudPlatform/solutions-gcs-bq-streaming-functions-
python/blob/master/�restore/show_streaming_errors.py)

-GCS-BQ-STREAMING-FUNCTIONS-PYTHON/BLOB/MASTER/FIRESTORE/SHOW_STREAMING_ERRORS.PY)

6. Verify that the �le was removed from the FILES_SOURCE bucket by the streaming_error
function.

The output is a CommandException because the �le doesn't exist in the FILES_SOURCE
bucket anymore.

7. Verify that the �le is now in the FILES_ERROR bucket, as expected.

The output is:

Find and �x data ingestion issues

Running queries against the streaming_files collection in Firestore lets you quickly diagnose
and �x issues. In this section, you �lter all error �les by using the standard Python API for
Firestore (https://pypi.org/project/google-cloud-�restore/).

To see the results of the query in your environment:

1. Create a virtual environment in your firestore folder.

gsutil ls -l gs://${FILES_SOURCE}/data_error.json  

gsutil ls -l gs://${FILES_ERROR}/data_error.json  

TOTAL: 1 objects, 311 bytes. 

db = firestore.Client()
docs = db.collection(u'streaming_files')\
 .where(u'success', u'==', False)\
 .get()

 

pip install virtualenv
virtualenv firestore
source firestore/bin/activate

 

https://github.com/GoogleCloudPlatform/solutions-gcs-bq-streaming-functions-python/blob/master/firestore/show_streaming_errors.py
https://github.com/GoogleCloudPlatform/solutions-gcs-bq-streaming-functions-python/blob/master/firestore/show_streaming_errors.py
https://pypi.org/project/google-cloud-firestore/

1/25/2020 Streaming data from Cloud Storage into BigQuery using Cloud Functions | Solutions | Google Cloud

https://cloud.google.com/solutions/streaming-data-from-cloud-storage-into-bigquery-using-cloud-functions 16/20

2. Install the Python Firestore module in your virtual environment.

3. Visualize the existing pipeline issues.

The show_streaming_errors.py �le contains the Firestore query and other boilerplate for
looping the result and formatting the output. After you run the preceding command, the
output is similar to:

4. Deactivate your virtual environment when you �nish your analysis.

After you �nd and �x the problematic �les, upload them to the FILES_SOURCE bucket again
with the same �lename. This process makes them pass through the entire streaming
pipeline to insert their content into BigQuery.

Ale� on unexpected behaviours

In production environments, it's important to monitor and alert whenever something unexpected
happens. One of the many Logging (https://cloud.google.com/logging/) features are custom
metrics. Custom metrics let you create alerting policies to notify you and your team when the
metric meets speci�ed criteria.

In this section, you con�gure Monitoring to send email alerts whenever a �le ingestion fails. To
identify a failing ingestion, the following con�guration uses the default Python
logging.error(..) messages.

1. In the Cloud Console, go to the Logs-based metrics page.

pip install google-cloud-firestore  

python firestore/show_streaming_errors.py  

+-----------------+-------------------------+----------------------------------
| File Name | When | Error Message
+-----------------+-------------------------+----------------------------------
| data_error.json | 2019-01-22 11:31:58 UTC | Error streaming file 'data_error.
+-----------------+-------------------------+----------------------------------



deactivate  

https://cloud.google.com/logging/

1/25/2020 Streaming data from Cloud Storage into BigQuery using Cloud Functions | Solutions | Google Cloud

https://cloud.google.com/solutions/streaming-data-from-cloud-storage-into-bigquery-using-cloud-functions 17/20

GO TO THE LOGS-BASED METRICS PAGE (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/LOGS/METRICS

2. Click Create Metric.

3. In the Filter list, select Convert to advanced �lter.

4. In the advanced �lter, paste the following con�guration.

5. In the Metric Editor, �ll in the following �elds and then click Create Metric.

In the Name �eld, enter streaming-error.

In the Label section, enter payload_error in the Name �eld.

In the Label type list, select String.

In the Field name list, select textPayload.

In the Extraction regular expression �eld, enter (Error streaming file '.*'.).

In the Type list, select Counter.

resource.type="cloud_function"
resource.labels.function_name="streaming"
resource.labels.region="us-east1"
"Error streaming file "

 

https://console.cloud.google.com/logs/metrics

1/25/2020 Streaming data from Cloud Storage into BigQuery using Cloud Functions | Solutions | Google Cloud

https://cloud.google.com/solutions/streaming-data-from-cloud-storage-into-bigquery-using-cloud-functions 18/20

6. In the Google Cloud Console, go to Monitoring or use the following button:

GO TO MONITORING (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/MONITORING)

7. In the Monitoring navigation pane, select  Alerting and then select Create Policy.

8. In the Name this policy �eld, enter streaming-error-alert.

9. Click Add Condition:

In the Title �eld, enter streaming-error-condition.

In the Metric �eld, enter logging/user/streaming-error.

In the Condition trigger If list, select Any time series violates.

In the Condition list, select is above.

In the Threshold �eld, enter 0.

In the For list, select 1 minute.

10. In the Noti�cation Channel Type list, select Email, enter your email address, and then click
Add Noti�cation Channel.

11. (Optional) Click Documentation and add any information that you want included in a
noti�cation message.

https://console.cloud.google.com/monitoring

1/25/2020 Streaming data from Cloud Storage into BigQuery using Cloud Functions | Solutions | Google Cloud

https://cloud.google.com/solutions/streaming-data-from-cloud-storage-into-bigquery-using-cloud-functions 19/20

12. Click Save.

After saving the alerting policy, Monitoring monitors the streaming function error logs and
sends an email alert every time there are streaming errors during a one minute interval.

Cleaning up

To avoid incurring charges to your Google Cloud Platform account for the resources used in
this tutorial:

Delete the project

Caution: Deleting a project has the following effects:

Everything in the project is deleted. If you used an existing project for this tutorial, when you

delete it, you also delete any other work you've done in the project.

Custom project IDs are lost. When you created this project, you might have created a custom

project ID that you want to use in the future. To preserve the URLs that use the project ID, such

as an appspot.com URL, delete selected resources inside the project instead of deleting the

whole project.

1. In the Cloud Console, go to the Manage resources page.

GO TO THE MANAGE RESOURCES PAGE (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/IAM-ADMIN/PRO

2. In the project list, select the project you want to delete and click Delete .

3. In the dialog, type the project ID, and then click Shut down to delete the project.

What's next

Review Events and triggers (https://cloud.google.com/functions/docs/concepts/events-triggers)

to learn other ways to trigger a serverless function in Google Cloud.

Visit the alerting (https://cloud.google.com/monitoring/alerts/) page to learn how to improve
the alerting policy de�ned in this tutorial.

https://console.cloud.google.com/iam-admin/projects
https://cloud.google.com/functions/docs/concepts/events-triggers
https://cloud.google.com/monitoring/alerts/

1/25/2020 Streaming data from Cloud Storage into BigQuery using Cloud Functions | Solutions | Google Cloud

https://cloud.google.com/solutions/streaming-data-from-cloud-storage-into-bigquery-using-cloud-functions 20/20

Visit the Firestore documentation (https://cloud.google.com/�restore/) to learn more about
this global scale, NoSQL database.

Visit the BigQuery Quota and limits
 (https://cloud.google.com/bigquery/quotas#streaming_inserts) page to understand streaming
insert limits while implementing this solution in a production environment.

Visit the Cloud Functions quota and limits (https://cloud.google.com/functions/quotas) page
to understand the maximum size a deployed function can handle.

Try out other Google Cloud features for yourself. Have a look at our tutorials
 (https://cloud.google.com/docs/tutorials).

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License
 (https://creativecommons.org/licenses/by/4.0/), and code samples are licensed under the Apache 2.0 License
 (https://www.apache.org/licenses/LICENSE-2.0). For details, see our Site Policies
 (https://developers.google.com/terms/site-policies). Java is a registered trademark of Oracle and/or its a�liates.

Last updated January 16, 2020.

https://cloud.google.com/firestore/
https://cloud.google.com/bigquery/quotas#streaming_inserts
https://cloud.google.com/functions/quotas
https://cloud.google.com/docs/tutorials
https://creativecommons.org/licenses/by/4.0/
https://www.apache.org/licenses/LICENSE-2.0
https://developers.google.com/terms/site-policies

