
1/25/2020 TCP optimization for network performance in Google Cloud and hybrid scenarios

https://cloud.google.com/solutions/tcp-optimization-for-network-performance-in-gcp-and-hybrid/ 1/9

This article helps you understand ways to improve connection latency between processes
within Google Cloud. The article outlines methods to compute correct settings for decreasing
the latency of TCP connection.

Modern microservices architecture advocates that developers should build small services with
single responsibility. The services should communicate using TCP or UDP, based on the
reliability expectations of the system. It's therefore critical for microservices-based systems to
communicate with reliability and low latency.

Google Cloud provides both reliability and low latency by providing a global network
 (/about/locations/#meet-our-network), which means that our users can also go global. Having a
global network means that a user can simply create a VPC (/vpc/) that can span regions and
zones (/compute/docs/regions-zones/). Applications can connect to each other across regions and
zones without ever leaving the Google Cloud network.

Applications that have been written for a traditional data center environment can exhibit slow
performance when they're moved to a hybrid cloud environment—that is, when some of the
application components run in a corporate data center and others run in the cloud. Slow
performance can be the result of a number of factors. This article focuses on round-trip
latencies and how latency affects TCP performance in applications that move a considerable
amount of data over any part of the network.

TCP uses a windowing mechanism to prevent a fast sender from overrunning a slow receiver.
The receiver advertises how much data the sender should send before the sender must wait for
a window update from the receiver. As a result, if a receiving application can't receive data on
the connection, there's a limit to how much data can be queued waiting for the application.

The TCP window allows e�cient use of memory on the sending and receiving systems. As the
receiving application consumes data, window updates are sent to the sender. The fastest that
the window update can happen is in one round trip, which leads to the following formula for
one of the limits to the bulk transfer performance of a TCP connection:

https://cloud.google.com/about/locations/#meet-our-network
https://cloud.google.com/vpc/
https://cloud.google.com/compute/docs/regions-zones/


1/25/2020 TCP optimization for network performance in Google Cloud and hybrid scenarios

https://cloud.google.com/solutions/tcp-optimization-for-network-performance-in-gcp-and-hybrid/ 2/9

Throughput <= window size / round-trip time (RTT) latency

In the original design for TCP, this window has a maximum size of 65535 bytes (64 KiB - 1).
This was the maximum amount of data that the sender could send before the sender received a
window update in order to allow more data to be sent.

Since TCP was introduced, some key features have changed:

Typical network speeds have increased by four orders of magnitude.

Typical memory in a system has increased by four orders of magnitude.

The result of the �rst change is that the original TCP window sizes led to an ine�cient use of
network resources. A sender would send a window's worth of data at the best speed possible
under network conditions, and then sit idle for a considerable length of time while waiting for
the TCP window update. The result of the second change is that senders and receivers can use
more memory for networking to address the limitation exposed by �rst change.

The following diagram illustrates this interchange.

Delay sender is waiting for a 
window update to send into 
an exhausted TCP window

Sender Receiver

1 TCP window of data

TCP window update

t send

t receive

t receivet send +RTT =

The sender can't fully utilize the network, because it's waiting for the TCP window update before
sending additional data.



1/25/2020 TCP optimization for network performance in Google Cloud and hybrid scenarios

https://cloud.google.com/solutions/tcp-optimization-for-network-performance-in-gcp-and-hybrid/ 3/9

The solution is to send more data at a time. As the bandwidth of the network increases, more
data can �t into the pipe (network), and as the pipe gets longer, it takes longer to acknowledge
the receipt of the data. This relationship is known as the bandwidth-delay product (BDP). This
is calculated as the bandwidth multiplied by the round-trip time (RTT), resulting in a value that
speci�es the optimal number of bits to send in order to �ll the pipe. The formula is this:

BDP (bits) = bandwidth (bits/second) * RTT (seconds)

Computed BDP is used as TCP window size for optimization.

For example, imagine that you have a 10 Gbps network with an RTT of 30 milliseconds. For the
window size, use the value of the original TCP window size (65535 bytes). This value doesn't
come close to taking advantage of the bandwidth capability. The maximum TCP performance
possible on this link is as follows:

(65535 bytes * 8 bits/byte) = bandwidth * 0.030 second
bandwidth = (65535 bytes * 8 bits/byte) / 0.030 second
bandwidth = 524280 bits / 0.030 second
bandwidth = 17476000 bits / second

To state it another way, these values result in throughput that's a bit more than 17 Mbits per
second, which is a small fraction of network's 10 Gbps capability.

To resolve the performance limitations imposed by the original design of TCP window size,
extensions to the TCP protocol were introduced that allow the window size to be scaled to
much larger values. Window scaling supports windows up to 1,073,725,440 bytes, or almost 1
GiB. This feature is outlined in RFC 1323 (https://tools.ietf.org/html/rfc1323) as TCP window scale
option (https://tools.ietf.org/html/rfc1323#page-8).

The window scale extensions expand the de�nition of the TCP window to use 32 bits, and then
use a scale factor to carry this 32-bit value in the 16-bit window �eld of the TCP header. To see
if the feature is enabled on Linux-based systems, use the following command:

https://tools.ietf.org/html/rfc1323
https://tools.ietf.org/html/rfc1323#page-8


1/25/2020 TCP optimization for network performance in Google Cloud and hybrid scenarios

https://cloud.google.com/solutions/tcp-optimization-for-network-performance-in-gcp-and-hybrid/ 4/9

(All Google Cloud Linux virtual machines have this feature enabled by default.) A return value
of 1 indicates that the option is enabled. If the feature is disabled, you can enable it by using
the following command:

You can use the previous example to show the bene�t of having window scaling. As before,
assume a 10 Gbps network with 30-millisecond latency, and then compute a new window size
using this formula:

(Link speed * latency) / 8 bits = window size

If you plug in the example numbers, you get this:

(10 Gbps * 30ms/1000sec) / 8bits/byte = window size
(10000 Mbps * 0.030 second) / 8 bits/byte = 37.5 MB

Increasing the TCP window size to 37 MB can increase the theoretical limit of TCP bulk transfer
performance to a value approaching the network capability. Of course, many other factors can
limit performance, including system overhead, average packet size, and number of other �ows
sharing the link, but as you can see, the window size substantially mitigates the limits imposed
by the previous limited window size.



1/25/2020 TCP optimization for network performance in Google Cloud and hybrid scenarios

https://cloud.google.com/solutions/tcp-optimization-for-network-performance-in-gcp-and-hybrid/ 5/9

In Linux, the TCP window size is affected by the following sysctl(8) tunables:

The �rst two tunables affect the maximum TCP window size for applications that attempt to
control the TCP window size directly, by limiting the applications' request to no more than those
values. The second two tunables affect the TCP window size for applications that let Linux
auto-tuning do the work.

The optimal window-size value depends on your speci�c circumstances, but one starting point
is the largest BDP (bandwidth-delay product) for the path or paths over which you expect the
system to send data. In that case, you want to set the tunables by using following steps:

1. Make sure that you have root privileges.

2. Get the current buffer settings. Save these settings in case you want to roll back these
changes.

3. Set an environment variable to the new TCP window size that you want to use:

4. Set the maximum OS receive buffer size for all types of connections:



1/25/2020 TCP optimization for network performance in Google Cloud and hybrid scenarios

https://cloud.google.com/solutions/tcp-optimization-for-network-performance-in-gcp-and-hybrid/ 6/9

5. Set the maximum OS send buffer size for all types of connections:

6. Set the TCP receive memory buffer (tcp_rmem) settings:

The tcp_rmem setting takes three values:

The minimum receive buffer size that can be allocated for a TCP socket. In this
example, the value is 4096 bytes.

The default receive buffer size, which also overrides the
/proc/sys/net/core/rmem_default value used by other protocols. In the example,
the value is 87380 bytes.

The maximum receive buffer size that can be allocated for a TCP socket. In the
example, this is set to the value that you set earlier (8388608 bytes).

7. Set the TCP send memory buffer (tcp_wmem) settings:

The tcp_wmem setting takes three values:

The minimum TCP send buffer space available for a single TCP socket.

The default buffer space allowed for a single TCP socket.

The maximum TCP send buffer space.

8. Set the tunables so that subsequent connections use the values you speci�ed:



1/25/2020 TCP optimization for network performance in Google Cloud and hybrid scenarios

https://cloud.google.com/solutions/tcp-optimization-for-network-performance-in-gcp-and-hybrid/ 7/9

To persist these settings across reboots, append the commands you set previously to the
/etc/sysctl.conf �le:

When TCP has a large enough window size to utilize the BDP, the picture changes, as shown in
the following diagram:

Ack delay sender is waiting 
for window update to send 
into an exhausted TCP window

Sender Receiver

1 TCP window of data

TCP window update

t send

t receive

t receivet send +RTT =

The TCP window size can always be adapted based on the resources available to the process
involved and the TCP algorithm in use. As the diagram shows, window scaling lets a



1/25/2020 TCP optimization for network performance in Google Cloud and hybrid scenarios

https://cloud.google.com/solutions/tcp-optimization-for-network-performance-in-gcp-and-hybrid/ 8/9

connection go well beyond the 65 KiB window size de�ned in original TCP speci�cation.

You can test this yourself. First, make sure that you've made TCP window size changes to your
local computer and to a remote computer by setting the tunables on both machines. Then run
the following commands:.

The �rst command creates a 1 GB sample.txt �le that has random data. The second command
copies that �le from your local machine to a remote machine.

Note the scp command output on the console, which displays bandwidth in Kbps. You should
see sizable difference in the results from before and after the TCP window size changes.

Read the blog post on 5 steps to better Google Cloud networking performance
 (/blog/products/gcp/5-steps-to-better-gcp-network-performance?hl=ml).

Learn about Global Networking Products (/products/networking/).

Read more about Networking Tiers
 (/blog/products/gcp/introducing-network-service-tiers-your-cloud-network-your-way) on Google
Cloud.

Learn about Iperf (https://wikipedia.org/wiki/Iperf), a commonly used network testing tool
that can create TCP/UDP data streams and measure the throughput of the network that
carries them.

Learn to use Netperf (https://hewlettpackard.github.io/netperf/), another good network testing
tool, which is also used by the PerfKitBenchmark
 (https://github.com/GoogleCloudPlatform/PerfKitBenchmarker) suite to test performance and
benchmark the various cloud providers against one another.

https://cloud.google.com/blog/products/gcp/5-steps-to-better-gcp-network-performance?hl=ml
https://cloud.google.com/products/networking/
https://cloud.google.com/blog/products/gcp/introducing-network-service-tiers-your-cloud-network-your-way
https://wikipedia.org/wiki/Iperf
https://hewlettpackard.github.io/netperf/
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker


1/25/2020 TCP optimization for network performance in Google Cloud and hybrid scenarios

https://cloud.google.com/solutions/tcp-optimization-for-network-performance-in-gcp-and-hybrid/ 9/9

Try out other Google Cloud features for yourself. Have a look at our tutorials
 (/docs/tutorials).

https://cloud.google.com/docs/tutorials

