1/25/2020 Using Apache Hive on Cloud Dataproc | Solutions | Google Cloud

Solutions (https:/cloud.google.com/solutions/) Solutions

@19 Apache Hive on Cloud Dataproc

This tutorial shows how to use Apache Hive (https://hive.apache.org/) on Dataproc
(https://cloud.google.com/dataproc/) in an efficient and flexible way by storing Hive data in
Cloud Storage (https://cloud.google.com/storage/) and hosting the Hive metastore in a MySQL
(https://www.mysql.com/) database on Cloud SQL (https:/cloud.google.com/sql/). This separation
between compute and storage resources offers some advantages:

 Flexibility and agility: You can tailor cluster configurations
(https:/cloud.google.com/dataproc/docs/concepts#configuring-clusters) for specific Hive
workloads and scale each cluster independently up and down as needed.

e Cost savings: You can spin up an ephemeral cluster
(https://cloud.google.com/solutions/migration/hadoop/hadoop-gcp-migration-
overview#moving_to_an_ephemeral_model)

when you need to run a Hive job and then delete it when the job completes. The
resources that your jobs require are active only when they're being used, so you pay only
for what you use. You can also use preemptible VMs
(https:/cloud.google.com/dataproc/docs/concepts/compute/preemptible-vms) for noncritical
data processing or to create very large clusters at a lower total cost.

Hive is a popular open source data warehouse system built on Apache Hadoop
(https://hadoop.apache.org/). Hive offers a SQL-like query language called HiveQL
(https://wikipedia.org/wiki/Apache_Hive#HiveQL), which is used to analyze large, structured
datasets. The Hive metastore holds metadata about Hive tables, such as their schema and
location. Where MySQL is commonly used as a backend for the Hive metastore, Cloud SQL
makes it easy to set up, maintain, manage, and administer your relational databases on
Google Cloud.

Dataproc is a fast, easy-to-use, fully managed service on Google Cloud for running Apache
Spark (https:/spark.apache.org/) and Apache Hadoop (https://hadoop.apache.org/) workloads in a

https://cloud.google.com/solutions/using-apache- hive-on-cloud-dataproc 1/18

https://cloud.google.com/solutions/
https://cloud.google.com/solutions/
https://hive.apache.org/
https://cloud.google.com/dataproc/
https://cloud.google.com/storage/
https://www.mysql.com/
https://cloud.google.com/sql/
https://cloud.google.com/dataproc/docs/concepts#configuring-clusters
https://cloud.google.com/solutions/migration/hadoop/hadoop-gcp-migration-overview#moving_to_an_ephemeral_model
https://cloud.google.com/dataproc/docs/concepts/compute/preemptible-vms
https://hadoop.apache.org/
https://wikipedia.org/wiki/Apache_Hive#HiveQL
https://spark.apache.org/
https://hadoop.apache.org/

1/25/2020 Using Apache Hive on Cloud Dataproc | Solutions | Google Cloud

simple, cost-efficient way. Even though Dataproc instances can remain stateless, we
recommend persisting the Hive data in Cloud Storage and the Hive metastore in MySQL on
Cloud SQL.

Objectives

» Create a MySQL instance on Cloud SQL for the Hive metastore.
* Deploy Hive servers on Dataproc.

* Install the Cloud SQL Proxy. (https://cloud.google.com/sql/docs/mysql/sql-proxy) on the
Dataproc cluster instances.

* Upload Hive data to Cloud Storage.

* Run Hive queries on multiple Dataproc clusters.

Costs

This tutorial uses the following billable components of Google Cloud:

e Dataproc
e Cloud Storage
e Cloud SQL

You can use the pricing_calculator (https://cloud.google.com/products/calculator) to generate a cost
estimate based on your projected usage.

New GCP users might be eligible for a free trial (https:/cloud.google.com/free-trial).

Before you begin

Create a new project

1. In the Cloud Console, go to the project selector page.

https://cloud.google.com/solutions/using-apache- hive-on-cloud-dataproc 2/18

https://cloud.google.com/sql/docs/mysql/sql-proxy
https://cloud.google.com/products/calculator
https://cloud.google.com/free-trial
https://console.cloud.google.com/projectselector2/home/dashboard

1/25/2020 Using Apache Hive on Cloud Dataproc | Solutions | Google Cloud

2. Select or create a Cloud project.

Enable billing

e Make sure that billing is enabled for your Google Cloud project. Learn how to confirm
billing_is enabled for your project (https://cloud.google.com/billing/docs/how-to/modify-project).

Initialize the environment

1. Start a Cloud Shell instance:

2. In Cloud Shell, set the default Compute Engine zone to the zone where you are going to
create your Dataproc clusters. This tutorial uses the us-central1-a zone in the us-
centralil region.

export REGION=us-centrall
export ZONE=us-centrall-a
gcloud config set compute/zone SZONE

3. Enable the Dataproc and Cloud SQL Admin APIs by running this command in Cloud Shell:

gcloud services enable dataproc.googleapis.com sgladmin.googleapis.com

Reference architecture

For simplicity, in this tutorial you deploy all compute and storage services in the same Google
Cloud region (https://cloud.google.com/compute/docs/regions-zones/) to minimize network latency
and network transport costs. Figure 1 presents the architecture for this tutorial.

https://cloud.google.com/solutions/using-apache- hive-on-cloud-dataproc 3/18

https://cloud.google.com/billing/docs/how-to/modify-project
https://console.cloud.google.com/home/dashboard?cloudshell=true
https://cloud.google.com/compute/docs/regions-zones/

1/25/2020 Using Apache Hive on Cloud Dataproc | Solutions | Google Cloud

) Google Cloud Platform

US-Central1

Compute Servers

Ephemeral Cluster #1

a

O

Hive Client

3]

Hive Server

N2

Metastore
Service

\J

Cloud SQL
Proxy

e Cloud Dataproc

Ephemeral Cluster #2

a

&

Hive Client

i8]

Hive Server

N

Metastore
Service

\

Cloud SQL
Proxy

@ Cloud Dataproc

Schema

Hive Metadata

MySQL on
Cloud SQL

Warehouse

Figure 1. Example of a single-region Hive architecture

Hive Data

e Cloud Storage

With this architecture, the lifecycle of a Hive query follows these steps:

1. The Hive client submits a query to a Hive server that runs in an ephemeral Dataproc

cluster.

2. The server processes the query and requests metadata from the metastore service.

https://cloud.google.com/solutions/using-apache-hive-on-cloud-dataproc

4/18

1/25/2020 Using Apache Hive on Cloud Dataproc | Solutions | Google Cloud

3. The metastore service fetches Hive metadata from Cloud SQL through the Cloud SQL
Proxy.

4. The server loads data from the Hive warehouse located in a regional bucket
(https:/cloud.google.com/storage/docs/bucket-locations#location-r) in Cloud Storage.

5. The server returns the result to the client.

Considerations for multi-regional architectures

This tutorial focuses on a single-region architecture. However, you can consider a multi-regional
architecture if you need to run Hive servers in different geographic regions. In that case, you
should create separate Dataproc clusters that are dedicated to hosting the metastore service
and that reside in the same region as the Cloud SQL instance. The metastore service can
sometimes send high volumes of requests to the MySQL database, so it is critical to keep the
metastore service geographically close to the MySQL database in order to minimize impact on
performance. In comparison, the Hive server typically sends far fewer requests to the metastore
service. Therefore, it can be more acceptable for the Hive server and the metastore service to
reside in different regions despite the increased latency.

The metastore service can run only on Dataproc master nodes, not on worker nodes. Dataproc
enforces a minimum of 2 worker nodes in standard clusters and in high-availability clusters

(https:/cloud.google.com/dataproc/docs/concepts/configuring-clusters/high-availability). To avoid
wasting resources on unused worker nodes, you can create a single-node
(https:/cloud.google.com/dataproc/docs/concepts/configuring-clusters/single-node-clusters) cluster for
the metastore service instead. To achieve high availability, you can create multiple single-node
clusters.

The Cloud SQL proxy needs to be installed only on the metastore service clusters, because only
the metastore service clusters need to directly connect to the Cloud SQL instance. The Hive
servers then point to the metastore service clusters by setting the hive.metastore.uris
property,

(https://cwiki.apache.org/confluence/display/Hive/AdminManual+Metastore+Administration#AdminManu
alMetastoreAdministration-AdditionalConfigurationParameters)

to the comma-separated list of URIs. For example:

thrift://metastore1:9083, thrift://metastore2:9083

You can also consider using a multi-regional bucket

(https:/cloud.google.com/storage/docs/bucket-locations#location-mr) if the Hive data needs to be

https://cloud.google.com/solutions/using-apache- hive-on-cloud-dataproc 5/18

https://cloud.google.com/storage/docs/bucket-locations#location-r
https://cloud.google.com/dataproc/docs/concepts/configuring-clusters/high-availability
https://cloud.google.com/dataproc/docs/concepts/configuring-clusters/single-node-clusters
https://cwiki.apache.org/confluence/display/Hive/AdminManual+Metastore+Administration#AdminManualMetastoreAdministration-AdditionalConfigurationParameters
https://cloud.google.com/storage/docs/bucket-locations#location-mr

1/25/2020 Using Apache Hive on Cloud Dataproc | Solutions | Google Cloud

accessed from Hive servers that are located in multiple locations. The choice between regional
and multi-regional buckets depends on your use case. You must balance latency, availability,
and bandwidth costs. Refer to the documentation on location considerations

(https:/cloud.google.com/storage/docs/bucket-locations#considerations) for more details.

Figure 2 presents an example of a multi-regional architecture.

https://cloud.google.com/solutions/using-apache- hive-on-cloud-dataproc 6/18

https://cloud.google.com/storage/docs/bucket-locations#considerations

1/25/2020 Using Apache Hive on Cloud Dataproc | Solutions | Google Cloud

) Google Cloud Platform

US-Central1
Schema
Metastore
- B Service
== Cloud SQL
Compute Servers == Proxy

@ Cloud Dataproc

Ephemeral Cluster #1
Hive Metadata

=N [(R i Y
ﬁ} Hive Server I MySQL on
Hive Client | Cloud SQL
i1 N B Metastore
I Service
1
1
@ Cloud Dataproc : J,
1
]
| == Cloud SQL
! E—
| Proxy
1
1
1
i
]
Cloud Dataproc
| © couous
1
1
1
1
|
|
1
1
1
1
i
US-East1 : Multi-Regional
|
1
Compute Servers 1
: Warehouse
i
]
Ephemeral Cluster #2 :
| Hive Data
=N | A | i
{E} Hive Server
. . _— 5 Cloud Storage
Hive Client ° 9

@ Cloud Dataproc

Figure 2. Example of a multi-regional Hive architecture

As you can see, the multi-regional scenario is slightly more complex. To stay concise, this
tutorial uses a single-region architecture.

https://cloud.google.com/solutions/using-apache-hive-on-cloud-dataproc

7118

1/25/2020 Using Apache Hive on Cloud Dataproc | Solutions | Google Cloud

Creating the warehouse bucket

The first step is to create a warehouse bucket that will host the Hive data and be shared by all
Hive servers.

To create the warehouse bucket, run the following commands in Cloud Shell:

export PROJECT=$(gcloud info --format='value(config.project)')
gsutil mb -1 S{REGION} gs://S{PROJECT}-warehouse

Creating the Cloud SQL instance

In this section, you create a new Cloud SQL instance that will later be used to host the Hive
metastore.

In Cloud Shell, create a new Cloud SQL instance:

gcloud sql instances create hive-metastore \
--database-version="MYSQL_5_7" \
--activation-policy=ALWAYS \
--gce-zone $ZONE

This command might take a few minutes to complete.

Creating a Dataproc cluster
Create the first Dataproc cluster:

gcloud dataproc clusters create hive-cluster \
--scopes sqgl-admin \
--image-version 1.3 \
--initialization-actions gs://goog-dataproc-initialization-actions-${REGION}/clo
--properties hive:hive.metastore.warehouse.dir=gs://S${PROJECT}-warehouse/dataset
--metadata "hive-metastore-instance=${PROJECT}:${REGION}:hive-metastore"

Notes:

https://cloud.google.com/solutions/using-apache- hive-on-cloud-dataproc 8/18

1/25/2020

Using Apache Hive on Cloud Dataproc | Solutions | Google Cloud

You provide the sql-admin access scope
(https://cloud.google.com/sdk/gcloud/reference/dataproc/clusters/create#--scopes) to allow
cluster instances to access the Cloud SQL Admin API.

You specify the clusterimage version 1.3
(https://cloud.google.com/dataproc/docs/concepts/versioning/dataproc-versions), which is the
latest version available at the time of writing this tutorial.

You provide the URI to the Hive warehouse bucket in the
hive:hive.metastore.warehouse.dir property. This configures the Hive servers to read
from and write to the correct location.

You provide the Cloud SQL Proxy initialization action

(https://cloud.google.com/dataproc/docs/concepts/configuring-clusters/init-actions) that
Dataproc automatically runs on all cluster instances. The action does the following:

e Installs the Cloud SQL Proxy.

e Establishes a secure connection to the Cloud SQL instance specified in the hive-
metastore-instance metadata parameter.

¢ Creates the hive user and the Hive metastore's database.

You can see the full code
(https:/github.com/GoogleCloudDataproc/initialization-actions/tree/master/cloud-sql-proxy) for
the Cloud SQL Proxy initialization action on GitHub.

For simplicity, this tutorial uses only one master instance. To increase resilience in
production workloads, you should consider creating a cluster with three master instances
by using Dataproc's high availability mode

(https://cloud.google.com/dataproc/docs/concepts/configuring-clusters/high-availability).

Creating a Hive table

In this section, you upload a sample dataset to your warehouse bucket, create a new Hive table,
and run some HiveQL queries on that dataset.

1. Copy the sample dataset to your warehouse bucket:

gsutil cp gs://hive-solution/part-00000.parquet \
gs://S{PROJECT}-warehouse/datasets/transactions/part-00000.parquet

https://cloud.google.com/solutions/using-apache-hive-on-cloud-dataproc

9/18

https://cloud.google.com/sdk/gcloud/reference/dataproc/clusters/create#--scopes
https://cloud.google.com/dataproc/docs/concepts/versioning/dataproc-versions
https://cloud.google.com/dataproc/docs/concepts/configuring-clusters/init-actions
https://github.com/GoogleCloudDataproc/initialization-actions/tree/master/cloud-sql-proxy
https://cloud.google.com/dataproc/docs/concepts/configuring-clusters/high-availability

1/25/2020 Using Apache Hive on Cloud Dataproc | Solutions | Google Cloud

The sample dataset is compressed in the Parquet (https:/parquet.apache.org/) format and
contains thousands of fictitious bank transaction records with three columns: date,
amount, and transaction type.

2. Create an external Hive table for the dataset:

gcloud dataproc jobs submit hive \
--cluster hive-cluster \
--execute "
CREATE EXTERNAL TABLE transactions

(SubmissionDate DATE, TransactionAmount DOUBLE, TransactionType STRING)
STORED AS PARQUET

LOCATION 'gs://S{PROJECT}-warehouse/datasets/transactions’;"

Running Hive queries

You can use different tools inside Dataproc to run Hive queries. In this section, you learn how to
perform queries using the following tools:

e Dataproc's Hive jobs API
(https://cloud.google.com/sdk/gcloud/reference/dataproc/jobs/submit/hive).

¢ Beeline

(https://cwiki.apache.org/confluence/display/Hive/HiveServer2+Clients#HiveServer2Clients-
Beeline%E2%80%93CommandLineShell)

, a popular command line client that is based on SQLLine (http://sqlline.sourceforge.net/).

e SparkSQL (https:/spark.apache.org/sql/), Apache Spark's API for querying structured data.

In each section, you run a sample query.

Querying Hive with the Dataproc Jobs API

Run the following simple HiveQL query to verify that the parquet file is correctly linked to the
Hive table:

gcloud dataproc jobs submit hive \
--cluster hive-cluster \
--execute "
SELECT =*

https://cloud.google.com/solutions/using-apache- hive-on-cloud-dataproc 10/18

https://parquet.apache.org/
https://cloud.google.com/sdk/gcloud/reference/dataproc/jobs/submit/hive
https://cwiki.apache.org/confluence/display/Hive/HiveServer2+Clients#HiveServer2Clients-Beeline%E2%80%93CommandLineShell
http://sqlline.sourceforge.net/
https://spark.apache.org/sql/

1/25/2020 Using Apache Hive on Cloud Dataproc | Solutions | Google Cloud

FROM transactions
LIMIT 10;"

The output includes the following:

submissiondate

o e
2017-12-03 1167 .39
2017-09-23 2567 .87 debit
2017-12-22 1074.73 credit
2018-01-21 5718.58 debit

2017-10-21 333.26 debit
2017-09-12 2439.62 debit
2017-08-06 5885.08 debit
2017-12-065 7353.92 authorization
2017-09-12 4710.29 authorization
2018-01-05 9115.27

Querying Hive with Beeline

1. Open an SSH session with the Dataproc's master instance:
gcloud compute ssh hive-cluster-m

2. In the master instance's command prompt, open a Beeline session:
beeline -u "jdbc:hive2://localhost:10000"

Notes:

¢ You can also reference the master instance's name as the host instead of
localhost:

beeline -u "jdbc:hive2://hive-cluster-m:10000"

* |f you were using the high-availability mode with 3 masters, you would have to use
the following command instead:

beeline -u "jdbc:hive2://[CLUSTER_NAME]-m-0:2181, [CLUSTER_NAME]-m-1:2381, [

https://cloud.google.com/solutions/using-apache- hive-on-cloud-dataproc 11/18

1/25/2020 Using Apache Hive on Cloud Dataproc | Solutions | Google Cloud

3. When the Beeline prompt appears, run the following HiveQL query:

SELECT TransactionType, AVG(TransactionAmount) AS AverageAmount
FROM transactions

WHERE SubmissionDate = '2017-12-22'

GROUP BY TransactionType;

The output includes the following:

| authorization 4890.092525252529
| credit 4863 .769269565219
4982 .781458176331

4. Close the Beeline session:
lquit
5. Close the SSH connection:

exit

Querying Hive with SparkSQL

1. Open an SSH session with the Dataproc's master instance:
gcloud compute ssh hive-cluster-m

2. In the master instance's command prompt, open a new PySpark
(http://spark.apache.org/docs/latest/api/python/pyspark.html) shell session:

pyspark
3. When the PySpark shell prompt appears, type the following Python code:

from pyspark.sql import HiveContext
hc = HiveContext(sc)

https://cloud.google.com/solutions/using-apache-hive-on-cloud-dataproc

12/18

http://spark.apache.org/docs/latest/api/python/pyspark.html

1/25/2020 Using Apache Hive on Cloud Dataproc | Solutions | Google Cloud

hc.sql("""

SELECT SubmissionDate, AVG(TransactionAmount) as AvgDebit

FROM transactions

WHERE TransactionType = 'debit'’

GROUP BY SubmissionDate

HAVING SubmissionDate >= '2017-10-01' AND SubmissionDate < '2017-10-06"
ORDER BY SubmissionDate

""" show()

The output includes the following:

| 2017-10-01 4963 .114920399849

| 2017-10-02 5021.493300510582
| 2017-10-03 4982 .382279569891
| 2017-10-04 4873 .302702503676
| 2017-10-05 4967.696333583777

4. Close the PySpark session:
exit()
5. Close the SSH connection:

exit

Inspecting the Hive metastore

You now verify that the Hive metastore in Cloud SQL contains information about the

transactions table.

1. In Cloud Shell, start a new MySQL session on the Cloud SQL instance:
gcloud sql connect hive-metastore --user=root

When you're prompted for the root user password, do not type anything and just press the
RETURN key. For the sake of simplicity in this tutorial, you did not set any password for the

https://cloud.google.com/solutions/using-apache- hive-on-cloud-dataproc 13/18

1/25/2020

Using Apache Hive on Cloud Dataproc | Solutions | Google Cloud

root user. For information about setting a password to further protect the metastore
database, refer to the Cloud SQL documentation
(https://cloud.google.com/sql/docs/mysql/create-manage-users#changing_a_user_password). The
Cloud SQL Proxy initialization action also provides a mechanism for protecting
passwords through encryption—for more information, see the action's code repository.

(https://github.com/GoogleCloudDataproc/initialization-actions/tree/master/cloud-sql-
proxy#protecting-passwords-with-kms)

. In the MySQL command prompt, make hive_metastore the default database for the rest

of the session:

USE hive_metastore;

. Verify that the warehouse bucket's location is recorded in the metastore:

SELECT DB_LOCATION_URI FROM DBS;

The output looks like this:

. Verify that the table is correctly referenced in the metastore:

SELECT TBL_NAME, TBL_TYPE FROM TBLS;

The output looks like this:

T T o +
| TBL_NAME | TBL_TYPE

T T o +

| transactions | EXTERNAL_TABLE |
F—— - o +

5. Verify that the table's columns are also correctly referenced:

https://cloud.google.com/solutions/using-apache-hive-on-cloud-dataproc

14/18

https://cloud.google.com/sql/docs/mysql/create-manage-users#changing_a_user_password
https://github.com/GoogleCloudDataproc/initialization-actions/tree/master/cloud-sql-proxy#protecting-passwords-with-kms

1/25/2020

Using Apache Hive on Cloud Dataproc | Solutions | Google Cloud

SELECT COLUMN_NAME, TYPE_NAME
FROM COLUMNS_V2 c, TBLS t
WHERE c.CD_ID = t.SD_ID AND t.TBL_NAME = 'transactions’;

The output looks like this:

o o +

| COLUMN_NAME | TYPE_NAME |
o o +

| submissiondate | date

| transactionamount | double

| transactiontype | string

o m Fomm - +

. Verify that the input format and location are also correctly referenced:

SELECT INPUT_FORMAT, LOCATION
FROM SDS s, TBLS t
WHERE s.SD_ID = t.SD_ID AND t.TBL_NAME = 'transactions’;

The output looks like this:

| INPUT_FORMAT | LOCATION

e o

| org.apache.hadoop.hive.ql.io.parquet.MapredParquetInputFormat | gs://[PROJEC
e o

. Close the MySQL session:

exit

Creating another Dataproc cluster

In this section, you create another Dataproc cluster to verify that the Hive data and Hive

metastore can be shared across multiple clusters.

1. Create a new Dataproc cluster:

https://cloud.google.com/solutions/using-apache-hive-on-cloud-dataproc

15/18

1/25/2020 Using Apache Hive on Cloud Dataproc | Solutions | Google Cloud

gcloud dataproc clusters create other-hive-cluster \
--scopes cloud-platform \
--image-version 1.3 \
--initialization-actions gs://goog-dataproc-initialization-actions-${REGION
--metadata "hive-metastore-instance=${PROJECT}:S${REGION}:hive-metastore"

You do not provide a reference to the Hive warehouse bucket the way you did earlier, when
you created the first cluster with the hive:hive.metastore.warehouse.dir property. The
bucket's location is already recorded in the Hive metastore, as you verified in the previous
section.

2. Verify that the new cluster can access the data:

gcloud dataproc jobs submit hive \
--cluster other-hive-cluster \
--execute "
SELECT TransactionType, COUNT(TransactionType) as Count
FROM transactions
WHERE SubmissionDate = '2017-08-22'
GROUP BY TransactionType;"

The output includes the following:

e R +
| transactiontype | count
+ __________________

| authorization
| credit

Congratulations, you've completed the tutorial!

Cleaning up

To avoid incurring charges to your Google Cloud Platform account for the resources used in
this tutorial:

To avoid incurring charges to your Google Cloud account for the resources used in this tutorial:

https://cloud.google.com/solutions/using-apache- hive-on-cloud-dataproc 16/18

1/25/2020 Using Apache Hive on Cloud Dataproc | Solutions | Google Cloud

e Clean up any resources you created so you won't be billed for them in the future. The
easiest way to eliminate billing is to delete the project you created for the tutorial.

 Alternatively, you can delete individual resources.

Deleting the project

Caution: Deleting a project has the following effects:

» Everything in the project is deleted. If you used an existing project for this tutorial, when you

delete it, you also delete any other work you've done in the project.

» Custom project IDs are lost. When you created this project, you might have created a custom
project ID that you want to usein the future. To preserve the URLs that use the project ID, such
as an appspot.com URL, delete selected resources inside the project instead of deleting the

whole project.

1. In the Cloud Console, go to the Manage resources page.

2. In the project list, select the project you want to delete and click Delete | .

3. In the dialog, type the project ID, and then click Shut down to delete the project.

Deleting individual resources

Run the following commands in Cloud Shell to delete individual resources instead of deleting
the whole project:

gcloud dataproc clusters delete hive-cluster --quiet
gcloud dataproc clusters delete other-hive-cluster --quiet
gcloud sql instances delete hive-metastore --quiet

gsutil rm -r gs://${PROJECT}-warehouse

What's next

e Try BigQuery (https://cloud.google.com/bigquery/), Google's serverless, highly scalable, low-
cost enterprise data warehouse.

https://cloud.google.com/solutions/using-apache- hive-on-cloud-dataproc 17/18

https://console.cloud.google.com/iam-admin/projects
https://cloud.google.com/bigquery/

1/25/2020 Using Apache Hive on Cloud Dataproc | Solutions | Google Cloud

e Check out this guide

(https://cloud.google.com/solutions/migration/hadoop/hadoop-gcp-migration-overview) on
migrating Hadoop workloads to Google Cloud.

e Check out this initialization action

(https:/github.com/GoogleCloudDataproc/initialization-actions/tree/master/hive-hcatalog) for
more details on how to use Hive HCatalog

(https://cwiki.apache.org/confluence/display/Hive/HCatalog) on Dataproc.

e Learn how to configure Cloud SQL for high availability
(https://cloud.google.com/sql/docs/mysql/configure-ha) to increase service reliability.

e Try out other Google Cloud features for yourself. Have a look at our tutorials
(https://cloud.google.com/docs/tutorials).

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License
(https://creativecommons.org/licenses/by/4.0/), and code samples are licensed under the Apache 2.0 License
(https://www.apache.org/licenses/LICENSE-2.0). For details, see our Site Policies
(https://developers.google.com/terms/site-policies). Java is a registered trademark of Oracle and/or its affiliates.

Last updated January 16, 2020.

https://cloud.google.com/solutions/using-apache- hive-on-cloud-dataproc 18/18

https://cloud.google.com/solutions/migration/hadoop/hadoop-gcp-migration-overview
https://github.com/GoogleCloudDataproc/initialization-actions/tree/master/hive-hcatalog
https://cwiki.apache.org/confluence/display/Hive/HCatalog
https://cloud.google.com/sql/docs/mysql/configure-ha
https://cloud.google.com/docs/tutorials
https://creativecommons.org/licenses/by/4.0/
https://www.apache.org/licenses/LICENSE-2.0
https://developers.google.com/terms/site-policies

