
1/23/2020 Serving websites  |  Solutions  |  Google Cloud

https://cloud.google.com/solutions/web-serving-overview 1/23

Solutions Solutions

This article discusses how to host a website on Google Cloud. Google Cloud provides a robust,
�exible, reliable, and scalable platform for serving websites. Google built Google Cloud by using
the same infrastructure that Google uses to serve content from sites such as Google.com,
YouTube, and Gmail. You can serve your website's content by using the type and design of
infrastructure that best suits your needs.

You might �nd this article useful if you are:

Knowledgeable about how to create a website and have deployed and run some web-
serving infrastructure before.

Evaluating whether and how to migrate your site to Google Cloud.

If you want to build a simple website, consider using Google Sites
 (https://chrome.google.com/webstore/detail/google-sites/gmandedkgonhldbnjpikffdnneenijnd?), a
structured wiki- and web page-creation tool. For more information, visit Sites help
 (https://support.google.com/sites/?hl=en#topic=7184580).

Note: You might �nd it helpful to read the Concepts page of the Google Cloud overview

 (https://cloud.google.com/docs/overview) before reading this article. Some of those concepts are

referenced in this article without further explanation. If you're already a bit familiar with Google Cloud, you

can skip this step.

Choosing an option

If you're new to using Google Cloud, it's a reasonable approach to start by using the kind of
technology you're already familiar with. For example, if you currently use hardware servers or

 (https://cloud.google.com/solutions/)

Serving websites

https://cloud.google.com/solutions/
https://cloud.google.com/solutions/
https://chrome.google.com/webstore/detail/google-sites/gmandedkgonhldbnjpikffdnneenijnd?
https://support.google.com/sites/?hl=en#topic=7184580
https://cloud.google.com/docs/overview


1/23/2020 Serving websites  |  Solutions  |  Google Cloud

https://cloud.google.com/solutions/web-serving-overview 2/23

virtual machines (VMs) to host your site, perhaps with another cloud provider or on your own
hardware, Compute Engine (#compute-engine) provides a familiar paradigm for you. If you
already use a platform-as-a-service (PaaS) offering, such as Heroku or Engine Yard, App Engine
 (#app-engine) might be the best place to start.

After you become more familiar with Google Cloud, you can explore the richness of products
and services that Google Cloud provides. For example, if you started by using Compute Engine,
you might augment your site's capabilities by using Google Kubernetes Engine (GKE)
 (#kubernetes-engine) or migrate some or all of the functionality to App Engine.

The following table summarizes your hosting options on Google Cloud:

Option Product
Data
storage

Load
balancing

Scalability Logging

Static website
 (#static-site)

Cloud
Storage

Firebase
Hosting

Cloud
Storage
bucket

n/a Automaticallyn/a



1/23/2020 Serving websites  |  Solutions  |  Google Cloud

https://cloud.google.com/solutions/web-serving-overview 3/23

Option Product
Data
storage

Load
balancing

Scalability Logging

Virtual
machines
 (#compute-
engine)

Compute
Engine

Cloud SQL
Admin API,
Cloud
Storage API,
Datastore
API, and
Cloud
Bigtable
API, or you
can use
another
external
storage
provider.

Hard-disk-
based
persistent
disks, called
standard
persistent
disks, and
solid-state
persistent
disks (SSD).

HTTP(S)

TCP Proxy

SSL Proxy

IPv6
termination

Network

Cross-
region

Internal

Automatically
with
managed
instance
groups

Stackdriver Logging
 (https://cloud.google.com/logging/docs/)

Stackdriver Monitoring
 (https://cloud.google.com/monitoring/docs/)

Monitoring Console
 (https://app.google.stackdriver.com/)

Containers
 (#kubernetes-
engine)

GKE Similar to
Compute
Engine but
interacts
with
persistent
disks
differently

Network
HTTP(S)

Cluster
autoscaler

Stackdriver Logging
 (https://cloud.google.com/logging/docs/)

Stackdriver Monitoring
 (https://cloud.google.com/monitoring/docs/)

Monitoring Console
 (https://app.google.stackdriver.com/)

Managed
platform
 (#app-
engine)

App
Engine

Google does
it for you

Google
does it for
you

Google does
it for you

Google does it for you

https://cloud.google.com/logging/docs/
https://cloud.google.com/monitoring/docs/
https://app.google.stackdriver.com/
https://cloud.google.com/logging/docs/
https://cloud.google.com/monitoring/docs/
https://app.google.stackdriver.com/


1/23/2020 Serving websites  |  Solutions  |  Google Cloud

https://cloud.google.com/solutions/web-serving-overview 4/23

This article can help you to understand the main technologies that you can use for web serving
on Google Cloud and give you a glimpse of how the technologies work. The article provides
links to complete documentation, tutorials, and solutions articles that can help you build a
deeper understanding, when you're ready.

Understanding costs

Because there are so many variables and each implementation is different, it's beyond the
scope of this article to provide speci�c advice about costs. To understand Google's principles
about how pricing works on Google Cloud, see the pricing page
 (https://cloud.google.com/pricing/principles). To understand pricing for individual services, see the
product pricing section (https://cloud.google.com/pricing/list). You can also use the pricing
calculator (https://cloud.google.com/products/calculator/) to estimate what your Google Cloud
usage might look like. You can provide details about the services you want to use and then see
a pricing estimate.

Se�ing up domain name services

Usually, you will want to register a domain name for your site. You can use a public domain
name registrar, such as Google Domains (https://domains.google.com/about/), to register a unique
name for your site. If you want complete control of your own domain name system
 (https://wikipedia.org/wiki/Domain_Name_System) (DNS), you can use Cloud DNS
 (https://cloud.google.com/dns) to serve as your DNS provider. The Cloud DNS documentation
includes a quickstart (https://cloud.google.com/dns/quickstart) to get you going.

If you have an existing DNS provider that you want to use, you generally need to create a couple
of records with that provider. For a domain name such as example.com, you create an A record
with your DNS provider. For the www.example.com sub-domain, you create a CNAME record for www
to point it to the example.com domain. The A record maps a hostname to an IP address. The
CNAME record creates an alias for the A record.

If your domain name registrar is also your DNS provider, that's probably all you need to do. If
you use separate providers for registration and DNS, make sure that your domain name
registrar has the correct name servers associated with your domain.

https://cloud.google.com/pricing/principles
https://cloud.google.com/pricing/list
https://cloud.google.com/products/calculator/
https://domains.google.com/about/
https://wikipedia.org/wiki/Domain_Name_System
https://cloud.google.com/dns
https://cloud.google.com/dns/quickstart


1/23/2020 Serving websites  |  Solutions  |  Google Cloud

https://cloud.google.com/solutions/web-serving-overview 5/23

After making your DNS changes, the record updates can take some time to propagate
depending on your time-to-live (TTL) values in your zone. If this is a new hostname, the
changes go into effect quickly because the DNS resolvers don't have cached previous values
and can contact the DNS provider to get the necessary information to route requests.

Hosting a static website

The simplest way to serve website content over HTTP(S) is to host static web pages. Static web
pages are served unchanged, as they were written, usually by using HTML. Using a static
website is a good option if your site's pages rarely change after they have been published, such
as blog posts or pages that are part of a small-business website. You can do a lot with static
web pages, but if you need your site to have robust interactions with users through server-side
code, you should consider the other options discussed in this article.

Hosting a static website with Cloud Storage

Note: Though Cloud Storage serves content over HTTPS, it doesn't support end-to-end HTTPS for custom

domains. If you need end-to-end HTTPS serving, check out Firebase hosting (#�rebase_hosting) in the next

section.

To host a static site in Cloud Storage, you need to create a Cloud Storage bucket
 (https://cloud.google.com/storage/docs/key-terms#buckets), upload the content, and test your new
site. You can serve your data directly from storage.googleapis.com
 (https://cloud.google.com/storage/docs/cloud-console#_sharingdata), or you can verify that you own
your domain (https://cloud.google.com/storage/docs/domain-name-veri�cation) and use your domain
name.

You can create your static web pages however you choose. For example, you could hand-author
pages by using HTML and CSS. You can use a static-site generator, such as Jekyll
 (https://jekyllrb.com/), Ghost (https://ghost.org/), or Hugo (https://gohugo.io/), to create the content.
With static-site generators, you create a static website by authoring in markdown
 (https://wikipedia.org/wiki/Markdown), and providing templates and tools. Site generators
generally provide a local web server that you can use to preview your content.

After your static site is working, you can update the static pages by using any process you like.
That process can be as straightforward as hand-copying an updated page to the bucket. You

https://cloud.google.com/storage/docs/key-terms#buckets
https://cloud.google.com/storage/docs/cloud-console#_sharingdata
https://cloud.google.com/storage/docs/domain-name-verification
https://jekyllrb.com/
https://ghost.org/
https://gohugo.io/
https://wikipedia.org/wiki/Markdown


1/23/2020 Serving websites  |  Solutions  |  Google Cloud

https://cloud.google.com/solutions/web-serving-overview 6/23

might choose to use a more automated approach, such as storing your content on GitHub and
then using a webhook (https://developer.github.com/webhooks/) to run a script that updates the
bucket. An even more advanced system might use a continuous-integration/continuous-
delivery (CI/CD) tool, such as Jenkins (https://jenkins.io/), to update the content in the bucket.
Jenkins has a Cloud Storage plugin
 (https://wiki.jenkins-ci.org/display/JENKINS/Google+Cloud+Storage+Plugin) that provides a Google
Cloud Storage Uploader post-build step to publish build artifacts to Cloud Storage.

If you have a web app that needs to serve static content or user-uploaded static media, using
Cloud Storage can be a cost-effective and e�cient way to host and serve this content, while
reducing the amount of dynamic requests to your web app.

Additionally, Cloud Storage can directly accept user-submitted content. This feature lets users
upload large media �les directly and in a secure manner
 (https://cloud.google.com/solutions/architecture/digitalassets), without proxying through your
servers.

To get the best performance from your static website, see Best practices for Cloud Storage
 (https://cloud.google.com/storage/docs/best-practices).

For more information, see the following pages:

Hosting a static website (https://cloud.google.com/storage/docs/website-con�guration)

Jekyll Static Website on Cloud Storage
 (http://little418.com/2015/07/jekyll-google-cloud-storage.html) (blog post)

J is for Jenkins
 (https://medium.com/google-cloud/a-to-z-of-google-cloud-platform-a-personal-selection-j-is-for-
jenkins-7a718d1f458)

(blog post)

Band Aid 30 on Google Cloud
 (https://cloudplatform.googleblog.com/2015/04/BandAid-30-on-Google-Cloud-Platform-Theres-
more-than-one-way-to-skin-a-Web-server.html)

(blog post)

Cloud Storage documentation (https://cloud.google.com/storage/docs/overview)

Hosting a static website with Firebase Hosting

https://developer.github.com/webhooks/
https://jenkins.io/
https://wiki.jenkins-ci.org/display/JENKINS/Google+Cloud+Storage+Plugin
https://cloud.google.com/solutions/architecture/digitalassets
https://cloud.google.com/storage/docs/best-practices
https://cloud.google.com/storage/docs/website-configuration
http://little418.com/2015/07/jekyll-google-cloud-storage.html
https://medium.com/google-cloud/a-to-z-of-google-cloud-platform-a-personal-selection-j-is-for-jenkins-7a718d1f458
https://cloudplatform.googleblog.com/2015/04/BandAid-30-on-Google-Cloud-Platform-Theres-more-than-one-way-to-skin-a-Web-server.html
https://cloud.google.com/storage/docs/overview


1/23/2020 Serving websites  |  Solutions  |  Google Cloud

https://cloud.google.com/solutions/web-serving-overview 7/23

Firebase Hosting provides fast and secure static hosting for your web app. With Firebase
Hosting, you can deploy web apps and static content to a global content-delivery network
(CDN) by using a single command.

Here are some bene�ts you get when you use Firebase Hosting:

Zero-con�guration SSL is built into Firebase Hosting. Provisions SSL certi�cates on
custom domains for free.

All of your content is served over HTTPS.

Your content is delivered to your users from CDN edges around the world.

Using the Firebase CLI (https://�rebase.google.com/docs/cli/), you can get your app up and
running in seconds. Use command-line tools to add deployment targets into your build
process.

You get release management features, such as atomic deployment of new assets, full
versioning, and one-click rollbacks.

Hosting offers a con�guration useful for single-page apps
 (https://�rebase.google.com/docs/hosting/url-redirects-rewrites) and other sites that are more
app-like.

Hosting is built to be used seamlessly with other Firebase features.

For more information, see the following pages:

Firebase Hosting guide (https://�rebase.google.com/docs/hosting)

Get started with Firebase Hosting (https://�rebase.google.com/docs/hosting/quickstart)

Using vi�ual machines with Compute Engine

For infrastructure as a service (IaaS) use cases, Google Cloud provides Compute Engine
 (https://cloud.google.com/compute/). Compute Engine provides a robust computing infrastructure,
but you must choose and con�gure the platform components that you want to use. With
Compute Engine, it's your responsibility to con�gure, administer, and monitor the systems.
Google ensures that resources are available, reliable, and ready for you to use, but it's up to you
to provision and manage them. The advantage, here, is that you have complete control of the
systems and unlimited �exibility.

https://firebase.google.com/docs/cli/
https://firebase.google.com/docs/hosting/url-redirects-rewrites
https://firebase.google.com/docs/hosting
https://firebase.google.com/docs/hosting/quickstart
https://cloud.google.com/compute/


1/23/2020 Serving websites  |  Solutions  |  Google Cloud

https://cloud.google.com/solutions/web-serving-overview 8/23

Use Compute Engine to design and deploy nearly any website-serving system you want. You
can use VMs, called instances (https://cloud.google.com/compute/docs/instances), to build your
app, much like you would if you had your own hardware infrastructure. Compute Engine offers
a variety of machine types (https://cloud.google.com/compute/docs/machine-types) to customize
your con�guration to meet your needs and your budget. You can choose which operating
systems, development stacks, languages, frameworks, services, and other software
technologies you prefer.

Se�ing up automatically with Google Cloud Marketplace

The easiest way to deploy a complete web-serving stack is by using Google Cloud Marketplace
 (https://cloud.google.com/marketplace/). With just a few clicks, you can deploy any of over 100
fully realized solutions with Google Click to Deploy or Bitnami.

For example, you can set up a LAMP stack
 (https://cloud.google.com/marketplace/solution/click-to-deploy-images/lamp) or WordPress
 (https://cloud.google.com/marketplace/solution/click-to-deploy-images/wordpress) with Google Cloud

https://cloud.google.com/compute/docs/instances
https://cloud.google.com/compute/docs/machine-types
https://cloud.google.com/marketplace/
https://cloud.google.com/marketplace/solution/click-to-deploy-images/lamp
https://cloud.google.com/marketplace/solution/click-to-deploy-images/wordpress


1/23/2020 Serving websites  |  Solutions  |  Google Cloud

https://cloud.google.com/solutions/web-serving-overview 9/23

Marketplace. The system deploys a complete, working software stack in just a few minutes on
a single instance. Before you deploy, Google Cloud Marketplace shows you cost estimates for
running the site, gives you clear information about which versions of the software components
it installs for you, and lets you customize your con�guration by changing component instance
names, choosing the machine type, and choosing a disk size. After you deploy, you have
complete control over the Compute Engine instances, their con�gurations, and the software.

Se�ing up manually

You can also create your infrastructure on Compute Engine manually, either building your
con�guration from scratch or building on a Google Cloud Marketplace deployment. For
example, you might want to use a version of a software component not offered by Google
Cloud Marketplace, or perhaps you prefer to install and con�gure everything on your own.

Providing a complete framework and best practices for setting up a website is beyond the
scope of this article. But from a high-level view, the technical side of setting up a web-serving
infrastructure on Compute Engine requires that you:

Understand the requirements. If you're building a new website, make sure you
understand the components you need, such as instances, storage needs, and networking
infrastructure. If you're migrating your app from an existing solution, you probably already
understand these requirements, but you need think through how your existing setup maps
to Google Cloud services (https://cloud.google.com/docs/overview/cloud-platform-services).

Plan the design. Think through your architecture and write down your design. Be as
explicit as you can.

Create the components. The components that you might usually think of as physical
assets, such as computers and network switches, are provided through services in
Compute Engine. For example, if you want a computer, you have to create a Compute
Engine instance. If you want a persistent hard disk drive, you create that, too. Cloud
Deployment Manager (https://cloud.google.com/deployment-manager/overview) makes this an
easy and repeatable process.

Con�gure and customize. After you have the components you want, you need to
con�gure them, install and con�gure software, and write and deploy any customization
code that you require. You can replicate the con�guration by running shell scripts, which
helps to speed future deployments. Deployment Manager helps here, too, by providing
declarative, �exible con�guration templates for automatic deployment of resources. You

https://cloud.google.com/docs/overview/cloud-platform-services
https://cloud.google.com/deployment-manager/overview


1/23/2020 Serving websites  |  Solutions  |  Google Cloud

https://cloud.google.com/solutions/web-serving-overview 10/23

can also take advantage of IT automation tools such as Puppet (https://puppet.com/) and
Chef (https://www.chef.io/).

Deploy the assets. Presumably, you have web pages and images.

Test. Verify that everything works as you expect.

Deploy to production. Open up your site for the world to see and use.

To help you to get started and understand what it's like to set up Compute Engine instances
manually, try one or more of the following tutorials:

Hosting a website using LAMP (https://cloud.google.com/compute/docs/tutorials/setup-lamp)

Setting up Joomla! (https://cloud.google.com/compute/docs/tutorials/setup-joomla)

Setting up Drupal (https://cloud.google.com/solutions/drupal/setup-drupal)

Storing data with Compute Engine

Most websites need some kind of storage. You might need storage for a variety of reasons,
such as saving �les that your users upload, and of course the assets that your site uses.

Google Cloud provides a variety of managed storage services, including:

A SQL database in Cloud SQL (https://cloud.google.com/sql/docs/introduction), which is
based on MySQL.

Two options for NoSQL data storage: Datastore
 (https://cloud.google.com/datastore/docs/concepts/overview) and Cloud Bigtable
 (https://cloud.google.com/bigtable/docs/).

Consistent, scalable, large-capacity object storage in Cloud Storage
 (https://cloud.google.com/storage/docs/overview). Cloud Storage comes in several classes:

Standard provides maximum availability.

Nearline provides a low-cost choice ideal for data accessed less than once a month.

Coldline provides a low-cost choice ideal for data accessed less than once a quarter.

Archive provides the lowest-cost choice for archiving, backup, and disaster recovery.

Persistent disks on Compute Engine (https://cloud.google.com/compute/docs/disks/#pdspecs)

for use as primary storage for your instances. Compute Engine offers both hard-disk-
based persistent disks, called standard persistent disks, and solid-state persistent disks
(SSD). You can also choose to set up your preferred storage technology on Compute

https://puppet.com/
https://www.chef.io/
https://cloud.google.com/compute/docs/tutorials/setup-lamp
https://cloud.google.com/compute/docs/tutorials/setup-joomla
https://cloud.google.com/solutions/drupal/setup-drupal
https://cloud.google.com/sql/docs/introduction
https://cloud.google.com/datastore/docs/concepts/overview
https://cloud.google.com/bigtable/docs/
https://cloud.google.com/storage/docs/overview
https://cloud.google.com/compute/docs/disks/#pdspecs


1/23/2020 Serving websites  |  Solutions  |  Google Cloud

https://cloud.google.com/solutions/web-serving-overview 11/23

Engine by using persistent disks. For example, you can set up PostgreSQL
 (https://cloud.google.com/solutions/setup-postgres) as your SQL database or MongoDB
 (https://cloud.google.com/solutions/mongodb/intro) as your NoSQL storage. To understand
the full range and bene�ts of storage services on Google Cloud, see Choosing a storage
option (https://cloud.google.com/docs/storing-your-data).

Load balancing with Compute Engine

For any website that operates at scale, using load-balancing technologies to distribute the
workload among servers is often a requirement. You have a variety of options when
architecting your load-balanced web servers on Compute Engine, including:

HTTP(S) load balancing (https://cloud.google.com/compute/docs/load-balancing/http/).
Explains the fundamentals of using Cloud Load Balancing.

Content-based load balancing
 (https://cloud.google.com/compute/docs/load-balancing/http/content-based-example).
Demonstrates how to distribute tra�c to different instances based on the incoming
URL.

Cross-region load balancing
 (https://cloud.google.com/compute/docs/load-balancing/http/cross-region-example).
Demonstrates con�guring VM instances in different regions and using HTTP or
HTTPS load balancing to distribute tra�c across the regions.

TCP Proxy load balancing (https://cloud.google.com/load-balancing/docs/tcp/). Demonstrates
setting up global TCP Proxy load balancing for a service that exists in multiple regions.

SSL Proxy load balancing (https://cloud.google.com/compute/docs/load-balancing/tcp-ssl).
Demonstrates setting up global SSL Proxy load balancing for a service that exists in
multiple regions.

IPv6 termination for HTTP(S), SSL Proxy, and TCP Proxy load balancing
 (https://cloud.google.com/compute/docs/load-balancing/ipv6). Explains IPv6 termination and
the options for con�guring load balancers to handle IPv6 requests.

Network load balancing
 (https://cloud.google.com/compute/docs/load-balancing/network/example). Shows a basic
scenario that sets up a layer 3 load balancing con�guration to distribute HTTP tra�c
across healthy instances.

https://cloud.google.com/solutions/setup-postgres
https://cloud.google.com/solutions/mongodb/intro
https://cloud.google.com/docs/storing-your-data
https://cloud.google.com/compute/docs/load-balancing/http/
https://cloud.google.com/compute/docs/load-balancing/http/content-based-example
https://cloud.google.com/compute/docs/load-balancing/http/cross-region-example
https://cloud.google.com/load-balancing/docs/tcp/
https://cloud.google.com/compute/docs/load-balancing/tcp-ssl
https://cloud.google.com/compute/docs/load-balancing/ipv6
https://cloud.google.com/compute/docs/load-balancing/network/example


1/23/2020 Serving websites  |  Solutions  |  Google Cloud

https://cloud.google.com/solutions/web-serving-overview 12/23

Cross-region load balancing using Microsoft IIS backends
 (https://cloud.google.com/compute/docs/tutorials/http-load-balancing-iis). Shows how to use
the Compute Engine load balancer to distribute tra�c to Microsoft Internet Information
Services (IIS) servers.

Setting up internal load balancing
 (https://cloud.google.com/compute/docs/load-balancing/internal/) You can set up a load
balancer that distributes network tra�c on a private network that isn't exposed to the
internet. Internal load balancing is useful not only for intranet apps where all tra�c
remains on a private network, but also for complex web apps where a frontend sends
requests to backend servers by using a private network.

Load balancing deployment is �exible, and you can use Compute Engine with your existing
solutions. For a few examples, see Autoscaled internal load balancing using HAProxy and
Consul
 (https://cloud.google.com/solutions/autoscaled-load-balancing-using-haproxy-and-consul-on-compute-
engine)

for information about autoscaling both the HAProxy load balancing tier and the backend server
tier. See HTTP(S) load balancing using NGINX
 (https://cloud.google.com/solutions/https-load-balancing-nginx) for one possible solution that you
could use in place of the Compute Engine load balancer.

Content distribution with Compute Engine

Because response time is a fundamental metric for any website, using a CDN to lower latency
and increase performance is often a requirement, especially for a site with global web tra�c.

Cloud CDN uses Google's globally distributed edge points of presence to deliver content from
cache locations closest to users. Cloud CDN works with HTTP(S) load balancing. To serve
content out of Compute Engine, Cloud Storage, or both from a single IP address, enable Cloud
CDN (https://cloud.google.com/cdn/docs/using-cdn) for an HTTP(S) load balancer.

Autoscaling with Compute Engine

You can set up your architecture to add and remove servers as demand varies. This approach
can help to ensure that your site performs well under peak load, while keeping costs under
control during more-typical demand periods. Compute Engine provides an autoscaler that you
can use for this purpose.

https://cloud.google.com/compute/docs/tutorials/http-load-balancing-iis
https://cloud.google.com/compute/docs/load-balancing/internal/
https://cloud.google.com/solutions/autoscaled-load-balancing-using-haproxy-and-consul-on-compute-engine
https://cloud.google.com/solutions/https-load-balancing-nginx
https://cloud.google.com/cdn/docs/using-cdn


1/23/2020 Serving websites  |  Solutions  |  Google Cloud

https://cloud.google.com/solutions/web-serving-overview 13/23

Autoscaling is a feature of managed instance groups
 (https://cloud.google.com/compute/docs/instance-groups/). A managed instance group is a pool of
homogeneous virtual machine instances, created from a common instance template
 (https://cloud.google.com/compute/docs/instance-templates). An autoscaler adds or remove
instances in a managed instance group. Although Compute Engine has both managed and
unmanaged instance groups, you can only use managed instance groups with an autoscaler.
For more information, see autoscaling on Compute Engine
 (https://cloud.google.com/compute/docs/autoscaler/).

For an in-depth look at what it takes to build a scalable and resilient web-app solution, see
Building scalable and resilient web apps
 (https://cloud.google.com/solutions/scalable-and-resilient-apps).

Logging and monitoring with Compute Engine

Google Cloud includes features that you can use to keep tabs on what's happening with your
website.

Stackdriver Logging (https://cloud.google.com/logging/docs/) collects and stores logs from apps
and services on Google Cloud. You can view or export logs and integrate third-party logs by
using a logging agent.

Stackdriver Monitoring (https://cloud.google.com/monitoring/docs/) provides dashboards and alerts
for your site. You con�gure Monitoring by using the Monitoring Console
 (https://app.google.stackdriver.com/). You can review performance metrics for cloud services,
virtual machines, and common open source servers such as MongoDB, Apache, Nginx, and

https://cloud.google.com/compute/docs/instance-groups/
https://cloud.google.com/compute/docs/instance-templates
https://cloud.google.com/compute/docs/autoscaler/
https://cloud.google.com/solutions/scalable-and-resilient-apps
https://cloud.google.com/logging/docs/
https://cloud.google.com/monitoring/docs/
https://app.google.stackdriver.com/


1/23/2020 Serving websites  |  Solutions  |  Google Cloud

https://cloud.google.com/solutions/web-serving-overview 14/23

Elasticsearch. You can use the Stackdriver Monitoring API to retrieve monitoring data and
create custom metrics.

Managing DevOps with Compute Engine

For information about managing DevOps with Compute Engine, see the following articles:

Compute Engine management with Puppet, Chef, Salt, and Ansible
 (https://cloud.google.com/solutions/google-compute-engine-management-puppet-chef-salt-ansible)

Automated image builds with Jenkins, Packer, and Kubernetes
 (https://cloud.google.com/solutions/automated-build-images-with-jenkins-kubernetes)

Distributed load testing using Kubernetes
 (https://cloud.google.com/solutions/distributed-load-testing-using-gke)

Continuous delivery with Travis CI
 (https://cloud.google.com/solutions/continuous-delivery-with-travis-ci)

https://cloud.google.com/solutions/google-compute-engine-management-puppet-chef-salt-ansible
https://cloud.google.com/solutions/automated-build-images-with-jenkins-kubernetes
https://cloud.google.com/solutions/distributed-load-testing-using-gke
https://cloud.google.com/solutions/continuous-delivery-with-travis-ci


1/23/2020 Serving websites  |  Solutions  |  Google Cloud

https://cloud.google.com/solutions/web-serving-overview 15/23

Running Spinnaker on Compute Engine
 (https://cloud.google.com/solutions/spinnaker-on-compute-engine)

Managing deployments on Google Cloud with Spinnaker
 (https://cloud.google.com/solutions/managing-deployments-on-gcp-with-spinnaker)

Using containers with GKE

You might already be using containers, such as Docker (https://docker.io) containers. For web
serving, containers offer several advantages, including:

Componentization. You can use containers to separate the various components of your
web app. For example, suppose your site runs a web server and a database. You can run
these components in separate containers, modifying and updating one component
without affecting the other. As your app's design becomes more complex, containers are a
good �t for a service-oriented architecture
 (https://wikipedia.org/wiki/Service-oriented_architecture), including microservices
 (https://wikipedia.org/wiki/Microservices). This kind of design supports scalability, among
other goals.

Portability. A container has everything it needs to run—your app and its dependencies are
bundled together. You can run your containers on a variety of platforms, without worrying
about the underlying system details.

Rapid deployment. When it's time to deploy, your system is built from a set of de�nitions
and images, so the parts can be deployed quickly, reliably, and automatically. Containers
are typically small and deploy much more quickly compared to, for example, virtual
machines.

Container computing on Google Cloud offers even more advantages for web serving, including:

Orchestration. GKE (https://cloud.google.com/kubernetes-engine/docs/) is a managed service
built on Kubernetes (http://kubernetes.io/), the open source container-orchestration system
introduced by Google. With GKE, your code runs in containers that are part of a cluster
 (https://cloud.google.com/kubernetes-engine/docs/clusters/) that is composed of Compute
Engine instances. Instead of administering individual containers or creating and shutting
down each container manually, you can automatically manage the cluster through GKE,
which uses the con�guration you de�ne.

https://cloud.google.com/solutions/spinnaker-on-compute-engine
https://cloud.google.com/solutions/managing-deployments-on-gcp-with-spinnaker
https://docker.io/
https://wikipedia.org/wiki/Service-oriented_architecture
https://wikipedia.org/wiki/Microservices
https://cloud.google.com/kubernetes-engine/docs/
http://kubernetes.io/
https://cloud.google.com/kubernetes-engine/docs/clusters/


1/23/2020 Serving websites  |  Solutions  |  Google Cloud

https://cloud.google.com/solutions/web-serving-overview 16/23

Image registration. Container Registry (https://cloud.google.com/container-registry/docs/)

provides private storage for Docker images on Google Cloud. You can access Container
Registry through an HTTPS endpoint, so you can pull images from any machine, whether
it's a Compute Engine instance or your own hardware. The registry service hosts your
custom images in Cloud Storage under your Google Cloud project. This approach ensures
by default that your custom images are only accessible by members of your project.

Mobility. This means that you have the �exibility to move and combine workloads with
other cloud providers, or mix cloud computing workloads with on-premises
implementations to create a hybrid solution.

Storing data with GKE

Because GKE runs on Google Cloud and uses Compute Engine instances as nodes, your
storage options have a lot in common with storage on Compute Engine (#gce_storage). You can
access Cloud SQL, Cloud Storage, Datastore, and Bigtable through their APIs, or you can use
another external storage provider if you choose. However, GKE does interact with Compute
Engine persistent disks in a different way than a normal Compute Engine instance would.

A Compute Engine instance includes an attached disk. When you use Compute Engine, as long
as the instance exists, the disk volume remains with the instance. You can even detach the disk
and use it with a different instance. But in a container, on-disk �les are ephemeral. When a
container restarts, such as after a crash, the on-disk �les are lost. Kubernetes solves this issue
by using a volume (https://kubernetes.io/docs/concepts/storage/volumes/) abstraction, and one type
of volume is gcePersistentDisk (http://kubernetes.io/docs/user-guide/volumes/#gcepersistentdisk).
This means that you can use Compute Engine persistent disks with containers to keep your
data �les from being deleted when you use GKE.

To understand the features and bene�ts of a volume, you should �rst understand a bit about
pods (https://cloud.google.com/kubernetes-engine/docs/pods/). You can think of a pod as an app-
speci�c logical host for one or more containers. A pod runs on a node instance. When
containers are members of a pod, they can share several resources, including a set of shared
storage volumes. These volumes enable data to survive container restarts and to be shared
among the containers within the pod. Of course, you can use a single container and volume in a
pod, too, but the pod is a required abstraction to logically connect these resources to each other.

For an example, see the tutorial Using persistent disks with WordPress and MySQL
 (https://cloud.google.com/kubernetes-engine/docs/tutorials/persistent-disk/).

https://cloud.google.com/container-registry/docs/
https://kubernetes.io/docs/concepts/storage/volumes/
http://kubernetes.io/docs/user-guide/volumes/#gcepersistentdisk
https://cloud.google.com/kubernetes-engine/docs/pods/
https://cloud.google.com/kubernetes-engine/docs/tutorials/persistent-disk/


1/23/2020 Serving websites  |  Solutions  |  Google Cloud

https://cloud.google.com/solutions/web-serving-overview 17/23

Load balancing with GKE

Many large web serving architectures need to have multiple servers running that can share the
tra�c demands. Because you can create and manage multiple containers, nodes, and pods
with GKE, it's a natural �t for a load-balanced web serving system.

Using network load balancing

The easiest way to create a load balancer in GKE is to use Compute Engine's network load
balancing (https://cloud.google.com/compute/docs/load-balancing/network/). Network load
balancing can balance the load of your systems based on incoming internet protocol data,
such as the address, port, and protocol type. Network load balancing uses forwarding rules
 (https://cloud.google.com/compute/docs/reference/latest/forwardingRules). These rules point to
target pools (https://cloud.google.com/compute/docs/reference/latest/targetPools) that list which
instances are available to be used for load balancing.

With network load balancing, you can load balance additional TCP/UDP-based protocols such
as SMTP tra�c, and your app can directly inspect the packets.

You can deploy network load balancing simply by adding the type: LoadBalancer �eld to your
service con�guration �le.

Using HTTP(S) load balancing

If you need more advanced load-balancing features, such as HTTPS load balancing, content-
based load balancing, or cross-region load balancing, you can integrate your GKE service with
Compute Engine's HTTP/HTTPS load balancing feature. Kubernetes provides the Ingress
resource (https://kubernetes.io/docs/concepts/services-networking/ingress/) that encapsulates a
collection of rules for routing external tra�c to Kubernetes endpoints. In GKE, an Ingress
resource handles provisioning and con�guring the Compute Engine HTTP/HTTPS load
balancer.

For more information about using HTTP/HTTPS load balancing in GKE, see Setting up HTTP
load balancing with Ingress (https://cloud.google.com/kubernetes-engine/docs/tutorials/http-balancer).

Scaling with GKE

https://cloud.google.com/compute/docs/load-balancing/network/
https://cloud.google.com/compute/docs/reference/latest/forwardingRules
https://cloud.google.com/compute/docs/reference/latest/targetPools
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://cloud.google.com/kubernetes-engine/docs/tutorials/http-balancer


1/23/2020 Serving websites  |  Solutions  |  Google Cloud

https://cloud.google.com/solutions/web-serving-overview 18/23

For automatic resizing of clusters, you can use the Cluster Autoscaler. This feature periodically
checks whether there are any pods that are waiting for a node with free resources but aren't
being scheduled. If such pods exist, then the autoscaler resizes the node pool if resizing would
allow the waiting pods to be scheduled.

Cluster Autoscaler also monitors the usage of all nodes. If a node isn't needed for an extended
period of time, and all of its pods can be scheduled elsewhere, then the node is deleted.

For more information about the Cluster Autoscaler, its limitations, and best practices, see the
Cluster Autoscaler documentation
 (https://cloud.google.com/kubernetes-engine/docs/cluster-autoscaler).

Logging and monitoring with GKE

Like on Compute Engine, Logging (https://cloud.google.com/logging/docs/) and Monitoring
 (https://cloud.google.com/monitoring/docs/) provide your logging and monitoring services.
Logging collects and stores logs from apps and services. You can view or export logs and
integrate third-party logs by using a logging agent.

Monitoring provides dashboards and alerts for your site. You con�gure Monitoring by using the
Monitoring Console (https://app.google.stackdriver.com/). You can review performance metrics for
cloud services, virtual machines, and common open source servers such as MongoDB, Apache,
Nginx, and Elasticsearch. You can use the Monitoring API to retrieve monitoring data and create
custom metrics.

Managing DevOps with GKE

When you use GKE, you're already getting many of the bene�ts most people think of when they
think of DevOps. This is especially true when it comes to ease of packaging, deployment, and
management. For your CI/CD work�ow needs, you can take advantage of popular tools such as
Jenkins. See the following articles:

Jenkins on GKE (https://cloud.google.com/solutions/jenkins-on-kubernetes-engine)

Setting up Jenkins on GKE
 (https://cloud.google.com/solutions/jenkins-on-kubernetes-engine-tutorial)

Con�guring Jenkins for GKE
 (https://cloud.google.com/solutions/con�guring-jenkins-kubernetes-engine)

https://cloud.google.com/kubernetes-engine/docs/cluster-autoscaler
https://cloud.google.com/logging/docs/
https://cloud.google.com/monitoring/docs/
https://app.google.stackdriver.com/
https://cloud.google.com/solutions/jenkins-on-kubernetes-engine
https://cloud.google.com/solutions/jenkins-on-kubernetes-engine-tutorial
https://cloud.google.com/solutions/configuring-jenkins-kubernetes-engine


1/23/2020 Serving websites  |  Solutions  |  Google Cloud

https://cloud.google.com/solutions/web-serving-overview 19/23

Building on a managed pla�orm with App Engine

On Google Cloud, the managed platform as a service (PaaS) is called App Engine
 (https://cloud.google.com/appengine/docs/). When you build your website on App Engine, you get
to focus on coding up your features and let Google worry about managing the supporting
infrastructure. App Engine provides a wide range of features that make scalability, load
balancing, logging, monitoring, and security much easier than if you had to build and manage
them yourself. App Engine lets you code in a variety of programming languages, and it can use
a variety of other Google Cloud services.

App Engine provides the standard environment, which lets you run apps in a secure, sandboxed
environment. The App Engine standard environment distributes requests across multiple
servers, and scales servers to meet tra�c demands. Your app runs in its own secure, reliable
environment that's independent of the hardware, operating system, or physical location of the
server.

https://cloud.google.com/appengine/docs/


1/23/2020 Serving websites  |  Solutions  |  Google Cloud

https://cloud.google.com/solutions/web-serving-overview 20/23

To give you more options, App Engine offers the �exible environment. When you use the �exible
environment, your app runs on con�gurable Compute Engine instances, but App Engine
manages the hosting environment for you. This means that you can use additional runtimes,
including custom runtimes, for more programming language choices. You can also take
advantage of some of the �exibility that Compute Engine offers, such as choosing from a
variety of CPU and memory options.

Programming languages

The App Engine standard environment provides default runtimes, and you write source code in
speci�c versions of the supported programming languages
 (https://cloud.google.com/appengine/docs/standard/).

With the �exible environment, you write source code in a version of any of the supported
programming languages (https://cloud.google.com/appengine/docs/�exible/). You can customize
these runtimes or provide your own runtime with a custom Docker image or Docker�le.

If the programming language you use is a primary concern, you need to decide whether the
runtimes provided by the App Engine standard environment meet your requirements. If they
don't, you should consider using the �exible environment.

To determine which environment best meets your app's needs, see Choosing an App Engine
environment (https://cloud.google.com/appengine/docs/the-appengine-environments).

Getting started tutorials by language

The following tutorials can help you get started using the App Engine standard environment:

Hello World in Python (https://cloud.google.com/appengine/docs/python/)

Hello World in Java (https://cloud.google.com/appengine/docs/java/)

Hello World in PHP (https://cloud.google.com/appengine/docs/php/)

Hello World in Go (https://cloud.google.com/appengine/docs/go/)

The following tutorials can help you get started using the �exible environment:

Getting started with Python (https://cloud.google.com/python/)

Getting started with Java (https://cloud.google.com/java/)

Getting started with PHP (https://cloud.google.com/php/)

https://cloud.google.com/appengine/docs/standard/
https://cloud.google.com/appengine/docs/flexible/
https://cloud.google.com/appengine/docs/the-appengine-environments
https://cloud.google.com/appengine/docs/python/
https://cloud.google.com/appengine/docs/java/
https://cloud.google.com/appengine/docs/php/
https://cloud.google.com/appengine/docs/go/
https://cloud.google.com/python/
https://cloud.google.com/java/
https://cloud.google.com/php/


1/23/2020 Serving websites  |  Solutions  |  Google Cloud

https://cloud.google.com/solutions/web-serving-overview 21/23

Getting started with Go  (https://cloud.google.com/go/)

Getting started with Node.js (https://cloud.google.com/nodejs/)

Getting started with Ruby (https://cloud.google.com/ruby/)

Getting started with .NET (https://cloud.google.com/dotnet/)

Storing data with App Engine

App Engine gives you options for storing your data:

Name Structure Consistency

Datastore Schemaless Strongly consistent except when performing global queries.

Cloud SQLRelational Strongly consistent.

Cloud
Storage

Files and their associated
metadata

Strongly consistent except when performing list operations that get a
list of buckets or objects.

You can also use several third-party databases
 (https://cloud.google.com/appengine/docs/python/using-third-party-databases) with the standard
environment.

For more details about storage in App Engine, see Choosing a storage option
 (https://cloud.google.com/appengine/docs/python/storage), and then select your preferred
programming language.

When you use the �exible environment, you can use all of the same storage options as you can
with the standard environment, and a wider range of third-party databases as well. For more
information about third-party databases in the �exible environment, see Using third-party
databases (https://cloud.google.com/appengine/docs/�exible/python/using-third-party-databases).

Load balancing and autoscaling with App Engine

When you build on App Engine, load balancing and autoscaling are automatically managed for
you.

Logging and monitoring with App Engine

https://cloud.google.com/go/
https://cloud.google.com/nodejs/
https://cloud.google.com/ruby/
https://cloud.google.com/dotnet/
https://cloud.google.com/appengine/docs/python/using-third-party-databases
https://cloud.google.com/appengine/docs/python/storage
https://cloud.google.com/appengine/docs/flexible/python/using-third-party-databases


1/23/2020 Serving websites  |  Solutions  |  Google Cloud

https://cloud.google.com/solutions/web-serving-overview 22/23

In App Engine, requests are logged automatically, and you can view these logs in the Cloud
Console. App Engine also works with standard, language-speci�c libraries that provide logging
functionality and forwards the log entries to the logs in the Cloud Console. For example, in
Python (https://cloud.google.com/appengine/docs/python/logs/) you can use the standard Python
logging module and in Java (https://cloud.google.com/appengine/docs/java/logs/) you can use the
java.util.logging.Logger  (https://docs.oracle.com/javase/7/docs/api/java/util/logging/Logger.html)

API.

Monitoring provides features for monitoring your App Engine apps. Through the Cloud Console,
you can monitor incidents, uptime checks, and other details.

Building content management systems

Serving a website means managing your website assets. Cloud Storage provides a global
repository for these assets. One common architecture deploys static content to Cloud Storage
and then syncs to Compute Engine to render dynamic pages. Cloud Storage works with many
third-party content management systems, such as WordPress
 (https://wordpress.org/plugins/wp2cloud-wordpress-to-cloud/), Drupal
 (https://www.drupal.org/project/google_cloud_storage), and Joomla (https://www.joomla.org/). Cloud
Storage also offers an Amazon S3 compatible API
 (https://cloud.google.com/storage/docs/interoperability), so any system that works with Amazon S3
can work with Cloud Storage.

For a look at a sample architecture for a content management system, see Content
management (https://cloud.google.com/solutions/architecture/contentmanagement).

https://cloud.google.com/appengine/docs/python/logs/
https://cloud.google.com/appengine/docs/java/logs/
https://docs.oracle.com/javase/7/docs/api/java/util/logging/Logger.html
https://wordpress.org/plugins/wp2cloud-wordpress-to-cloud/
https://www.drupal.org/project/google_cloud_storage
https://www.joomla.org/
https://cloud.google.com/storage/docs/interoperability
https://cloud.google.com/solutions/architecture/contentmanagement


1/23/2020 Serving websites  |  Solutions  |  Google Cloud

https://cloud.google.com/solutions/web-serving-overview 23/23

What's next

Try out other Google Cloud features for yourself. Have a look at our tutorials
 (https://cloud.google.com/docs/tutorials).

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License
 (https://creativecommons.org/licenses/by/4.0/), and code samples are licensed under the Apache 2.0 License
 (https://www.apache.org/licenses/LICENSE-2.0). For details, see our Site Policies
 (https://developers.google.com/terms/site-policies). Java is a registered trademark of Oracle and/or its a�liates.

Last updated January 8, 2020.

https://cloud.google.com/docs/tutorials
https://creativecommons.org/licenses/by/4.0/
https://www.apache.org/licenses/LICENSE-2.0
https://developers.google.com/terms/site-policies

