
1/25/2020 Bulk loading best practices  |  Cloud Spanner  |  Google Cloud

https://cloud.google.com/spanner/docs/bulk-loading 1/5

Cloud Spanner 

Documentation Guides

This page provides guidelines for e�ciently bulk loading large amounts of data into Cloud
Spanner.

You have several options for loading data in bulk into Cloud Spanner:

Insert rows using Data Manipulation Language (DML)
 (https://cloud.google.com/spanner/docs/dml-tasks).

Insert rows using mutations (https://cloud.google.com/spanner/docs/modify-mutation-api)

through the client library.

Use the Data�ow connector (https://cloud.google.com/spanner/docs/data�ow-connector). If
you are importing data using the Data�ow connector, the best practices for the Data�ow
connector (#data�ow) apply.

Import a database (https://cloud.google.com/spanner/docs/import) using Avro �les. If you are
importing data from Avro �les, the best practices for importing Avro �les (#importing-avro)

apply.

Insert rows using the gcloud command-line tool
 (https://cloud.google.com/spanner/docs/modify-gcloud#modify-data). However, we don't
recommend that you use the gcloud tool to bulk load data.

Pe�ormance guidelines for bulk loading

You can achieve optimal bulk loading performance by following a few guidelines:

Minimize the number of splits
 (https://cloud.google.com/spanner/docs/schema-and-data-model#database-splits) that are
involved in each write transaction. Performance is maximized because write throughput
is maximized when fewer splits are involved in a transaction.

Maximize the use of partitioning to distribute writing the partitions across worker tasks.

Cloud Spanner uses load-based splitting
 (https://cloud.google.com/spanner/docs/schema-and-data-model#load-based_splitting) to evenly

 (https://cloud.google.com/spanner/)

 (https://cloud.google.com/spanner/docs/)

Bulk loading best practices

https://cloud.google.com/spanner/
https://cloud.google.com/spanner/docs/
https://cloud.google.com/spanner/docs/
https://cloud.google.com/spanner/docs/dml-tasks
https://cloud.google.com/spanner/docs/modify-mutation-api
https://cloud.google.com/spanner/docs/dataflow-connector
https://cloud.google.com/spanner/docs/import
https://cloud.google.com/spanner/docs/modify-gcloud#modify-data
https://cloud.google.com/spanner/docs/schema-and-data-model#database-splits
https://cloud.google.com/spanner/docs/schema-and-data-model#load-based_splitting


1/25/2020 Bulk loading best practices  |  Cloud Spanner  |  Google Cloud

https://cloud.google.com/spanner/docs/bulk-loading 2/5

distribute your data load across nodes. After a few minutes of high load, Cloud Spanner
introduces split boundaries between rows of non-interleaved tables. In general, if your data load
is well-distributed and you follow best practices for schema design and bulk loading, your write
throughput should double every few minutes until you saturate the available CPU resources in
your instance.

Pa�ition your data by primary key

To get optimal write throughput for bulk loads, partition your data by primary key with this
pattern:

Each partition contains a range of consecutive rows, as determined by the key columns.

Each commit contains data for only a single partition.

We recommend that the number of partitions be 10 times the number of nodes in your Cloud
Spanner instance. To assign rows to partitions:

Sort your data by primary key.

Divide the data into 10 * (number of nodes) separate, equally sized partitions.

Create and assign a separate worker task to each partition. Creating the worker tasks
happens in your application. It is not a Cloud Spanner feature.

Following this pattern, you should see a maximum overall bulk write throughput of 10-20 MB
per second per node for large loads.

As you load data, Cloud Spanner creates and updates splits to balance the load on the nodes in
your instance. During this process, you may experience temporary drops in throughput.

Example

You have a regional con�guration with 3 nodes. You have 90,000 rows in a non-interleaved
table. The primary keys in the table range from 1 to 90000.

Rows: 90,000 rows

Nodes: 3

Partitions: 10 * 3 = 30



1/25/2020 Bulk loading best practices  |  Cloud Spanner  |  Google Cloud

https://cloud.google.com/spanner/docs/bulk-loading 3/5

Rows per partition: 90000 / 30 = 3000.

The �rst partition includes the key range 1 to 3000. The second partition includes the key range
3001 to 6000. The 30th partition includes the key range 87001 to 90000. (You should not use
sequential keys in a large table. This example is only for demonstration.)

Each worker task sends the writes for a single partition. Within each partition, you should write
the rows sequentially by primary key. Writing rows randomly, with respect to the primary key,
should also provide reasonably high throughput. Measuring test runs will give you insight into
which approach provides the best performance for your dataset.

If you decide not to use pa�itions

Writing random rows in a commit where each mutation inserts a single row may be slower than
writing one row at a time. Multiple splits are likely involved, because each random row could
belong to a different split. In a worst case scenario, each write involves every split in your Cloud
Spanner instance. As mentioned above, write throughput is lowered when more splits are
involved for a write.

Avoid pushback

It's possible to send more write requests than Cloud Spanner can handle. Cloud Spanner
handles the overload by aborting transactions, which is called pushback. For write-only
transactions, Cloud Spanner automatically retries the transaction. In those cases, the pushback
shows up as high latency. During heavy loads, pushback can last for up to a minute. During
severely heavy loads, pushback can last for several minutes. To avoid pushback, you should
throttle write requests to keep CPU utilization within reasonable limits
 (https://cloud.google.com/spanner/docs/cpu-utilization#recommended-max).

Commit between 1 MB to 5 MB of mutations at a time

Each write to Cloud Spanner contains some overhead, whether the write is big or small. To
maximize throughput, maximize the amount of data stored per write. Larger writes lower the
ratio of overhead per write. A good technique is for each commit to mutate hundreds of rows.
When writing relatively large rows, a commit size of 1 MB to 5 MB usually provides the best

https://cloud.google.com/spanner/docs/cpu-utilization#recommended-max


1/25/2020 Bulk loading best practices  |  Cloud Spanner  |  Google Cloud

https://cloud.google.com/spanner/docs/bulk-loading 4/5

performance. When writing small values, or values that are indexed, it is generally best to write
at most a few hundred rows in a single commit. Independently from the commit size and
number of rows, be aware that there is a limitation of 20,000 mutations per commit
 (https://cloud.google.com/spanner/quotas#limits_for_creating_reading_updating_and_deleting_data). To
determine optimal performance, you should test and measure (#test-measure) the throughput.

Commits larger than 5 MB or more than a few hundred rows don't provide extra bene�t, and
they risk exceeding the Cloud Spanner limits (https://cloud.google.com/spanner/docs/limits) on
commit size and mutations per commit.

Guidelines for secondary indexes

If your database has secondary indexes (https://cloud.google.com/spanner/docs/secondary-indexes),
you must choose between adding the indexes to the database schema before or after loading
the table data.

In general, if you plan to create secondary indexes for your table, you should create the indexes
at the same time that you create the table. Following this rule of thumb usually makes the
index-creation process much more e�cient. To create a table and its indexes at the same time,
send the DDL statements for the new table and the new indexes in a single request to Cloud
Spanner.

If you prefer, you can load the data �rst, then create the indexes later. However, this approach is
usually slower.

Test and measure the throughput

Predicting throughput can be di�cult. We recommend that you test your bulk loading strategy
before running the �nal load. For a detailed example using partitioning and monitoring
performance, see Maximizing data load throughput
 (https://medium.com/google-cloud/cloud-spanner-maximizing-data-load-throughput-23a0fc064b6d).

Best practices for periodic bulk loading to an existing database

https://cloud.google.com/spanner/quotas#limits_for_creating_reading_updating_and_deleting_data
https://cloud.google.com/spanner/docs/limits
https://cloud.google.com/spanner/docs/secondary-indexes
https://medium.com/google-cloud/cloud-spanner-maximizing-data-load-throughput-23a0fc064b6d


1/25/2020 Bulk loading best practices  |  Cloud Spanner  |  Google Cloud

https://cloud.google.com/spanner/docs/bulk-loading 5/5

If you are updating an existing database that contains data but does not have any secondary
indexes (https://cloud.google.com/spanner/docs/secondary-indexes), then the recommendations in
this topic still apply.

If you do have secondary indexes, the instructions might yield reasonable performance.
Performance depends on how many splits
 (https://cloud.google.com/spanner/docs/schema-and-data-model#database-splits), on average, are
involved in your transactions. If throughput drops too low, you can try the following:

Include a smaller number of mutations in each commit, which might increase throughput.

If your upload is larger than the total current size of the table being updated, delete your
secondary indexes and then add them again after you upload the data. This step is
usually not necessary, but it might improve the throughput.

Best practices for impo�ing Avro �les

These pages provide information on improving import performance of Avro �les:

Importing Cloud Spanner Avro �les
 (https://cloud.google.com/spanner/docs/import#performance-factors)

Importing data from other databases
 (https://cloud.google.com/spanner/docs/import-non-spanner)

Best practices for using the Data�ow connector

For performance tips on using the Data�ow connector, see Writing to Cloud Spanner and
transforming data (https://cloud.google.com/spanner/docs/data�ow-connector#writing-transforming).

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License
 (https://creativecommons.org/licenses/by/4.0/), and code samples are licensed under the Apache 2.0 License
 (https://www.apache.org/licenses/LICENSE-2.0). For details, see our Site Policies
 (https://developers.google.com/terms/site-policies). Java is a registered trademark of Oracle and/or its a�liates.

Last updated December 4, 2019.

https://cloud.google.com/spanner/docs/secondary-indexes
https://cloud.google.com/spanner/docs/schema-and-data-model#database-splits
https://cloud.google.com/spanner/docs/import#performance-factors
https://cloud.google.com/spanner/docs/import-non-spanner
https://cloud.google.com/spanner/docs/dataflow-connector#writing-transforming
https://creativecommons.org/licenses/by/4.0/
https://www.apache.org/licenses/LICENSE-2.0
https://developers.google.com/terms/site-policies

