
1/25/2020 Commit timestamps | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/commit-timestamp/ 1/30

This topic describes how to write a commit timestamp for each insert and update operation that you
perform with Cloud Spanner. To use this feature, set the allow_commit_timestamp option on a
TIMESTAMP column, then write the timestamp as part of each transaction.

The commit timestamp, based on TrueTime technology, is the time when a transaction is committed
in the database. The allow_commit_timestamp column option allows you to atomically store the
commit timestamp into a column. Using the commit timestamps stored in tables, you can determine
the exact ordering of mutations and build features like changelogs.

To insert commit timestamps in your database, complete the following steps:

1. Create a TIMESTAMP column (#create-column) with the column option allow_commit_timestamp
set to true in the schema de�nition.

2. If you are performing inserts or updates with DML, use the PENDING_COMMIT_TIMESTAMP function
 (#dml) to write the commit timestamp.

If you are performing inserts or updates with mutations, use the placeholder string
spanner.commit_timestamp() (#insert-row) (or the client library constant) on insertions or
updates to your commit timestamp column.

When Cloud Spanner commits the transaction, the commit timestamp is written to the
LastUpdateTime column. You could then use LastUpdateTime to create a history of updates to the
Performances table.

Commit timestamp values are not guaranteed to be unique. Transactions that write to non-
overlapping sets of �elds might have the same timestamp. Transactions that write to overlapping
sets of �elds have unique timestamps.

Cloud Spanner commit timestamps have microsecond granularity, and they are converted to
nanoseconds when stored in TIMESTAMP columns.

Use the allow_commit_timestamp option to add and remove support for commit timestamps:

1/25/2020 Commit timestamps | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/commit-timestamp/ 2/30

To create a new column, in a new or existing table, that supports commit timestamps.

To alter an existing timestamp column to support commit timestamps.

To remove commit timestamp support from a column.

You can use a commit timestamp column as a primary key column or as a non-key column. Primary
keys can be de�ned as ASC or DESC.

ASC (default) - Ascending keys are ideal for answering queries from a speci�c time forward.

DESC - Descending keys keep the latest rows at the top of the table. They provide quick access
to the latest records.

The allow_commit_timestamp option must be consistent across the primary keys of parent and child
tables. If the option is not consistent across primary keys, Cloud Spanner returns an error. The only
time the option can be inconsistent is when you are creating or updating the schema.

Using commit timestamps under the following scenarios creates hotspots
 (/spanner/docs/schema-design#primary-key-prevent-hotspots) which reduce data performance:

Commit timestamp column as the �rst part of the primary key of a table:

The �rst part of the primary key of a secondary index:

or

https://cloud.google.com/spanner/docs/schema-design#primary-key-prevent-hotspots

1/25/2020 Commit timestamps | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/commit-timestamp/ 3/30

Hotspots (/spanner/docs/schema-design#primary-key-prevent-hotspots) reduce data performance, even
with low write rates. There is no performance overhead if commit timestamps are enabled on non-key
columns that are not indexed.

The following example creates a table with a column that supports commit timestamps.

https://cloud.google.com/spanner/docs/schema-design#primary-key-prevent-hotspots

1/25/2020 Commit timestamps | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/commit-timestamp/ 4/30

1/25/2020 Commit timestamps | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/commit-timestamp/ 5/30

1/25/2020 Commit timestamps | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/commit-timestamp/ 6/30

1/25/2020 Commit timestamps | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/commit-timestamp/ 7/30

1/25/2020 Commit timestamps | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/commit-timestamp/ 8/30

Adding the option changes the timestamp column as follows:

You can use the spanner.commit_timestamp() placeholder string (or a constant provided by the
client library) for inserts and updates.

The column can only contain values in the past. For more information, see Providing your own
value for the timestamp (#provide-timestamp).

The option allow_commit_timestamp is case sensitive.

1/25/2020 Commit timestamps | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/commit-timestamp/ 9/30

To add a commit timestamp column to an existing table, use the ALTER TABLE statement:

You can convert an existing timestamp column into a commit timestamp column, but doing so
requires Cloud Spanner to validate that the existing timestamp values are in the past. For example:

You cannot change the data type or NULL annotation of a column in an ALTER TABLE statement that
includes SET OPTIONS. For details, see Data De�nition Language
 (/spanner/docs/data-de�nition-language).

If you want to remove commit timestamp support from a column, use the option
allow_commit_timestamp=null in an ALTER TABLE statement. The commit timestamp behavior is
removed, but the column is still a timestamp. Changing the option does not alter any other
characteristics of the column, such as type or nullability (NOT NULL). For example:

You use the PENDING_COMMIT_TIMESTAMP
 (https://cloud.google.com/spanner/docs/functions-and-operators#timestamp-functions) function to write the

https://cloud.google.com/spanner/docs/data-definition-language
https://cloud.google.com/spanner/docs/functions-and-operators#timestamp-functions

1/25/2020 Commit timestamps | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/commit-timestamp/ 10/30

commit timestamp in a DML statement. Cloud Spanner selects the commit timestamp when the
transaction commits.

After you call the `PENDING_COMMIT_TIMESTAMP` method, the table and any derived index is unreadable to any fut

tatements in the transaction. You must write commit timestamps as the last statement in a transaction to prevent th

bility of trying to read the table. If you try to read the table, then Cloud Spanner returns an error.

The following DML statement updates the LastUpdated column in the Singers table with the commit
timestamp:

When inserting a row, Cloud Spanner writes the commit timestamp value only if you include the
column in the column list and pass the spanner.commit_timestamp() placeholder string (or client
library constant) as its value. For example:

1/25/2020 Commit timestamps | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/commit-timestamp/ 11/30

1/25/2020 Commit timestamps | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/commit-timestamp/ 12/30

1/25/2020 Commit timestamps | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/commit-timestamp/ 13/30

1/25/2020 Commit timestamps | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/commit-timestamp/ 14/30

1/25/2020 Commit timestamps | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/commit-timestamp/ 15/30

1/25/2020 Commit timestamps | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/commit-timestamp/ 16/30

Commit timestamps can only be written to columns annotated with the
allow_commit_timestamp=true option.

If you have mutations on rows in multiple tables, you must specify spanner.commit_timestamp() (or
client library constant) for the commit timestamp column in each table.

When updating a row, Cloud Spanner writes the commit timestamp value only if you include the
column in the column list and pass the spanner.commit_timestamp() placeholder string (or client
library constant) as its value. You cannot update the primary key of a row. To update the primary key,
delete the existing row and create a new row.

For example, to update a commit timestamp column named LastUpdateTime:

1/25/2020 Commit timestamps | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/commit-timestamp/ 17/30

1/25/2020 Commit timestamps | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/commit-timestamp/ 18/30

1/25/2020 Commit timestamps | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/commit-timestamp/ 19/30

1/25/2020 Commit timestamps | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/commit-timestamp/ 20/30

1/25/2020 Commit timestamps | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/commit-timestamp/ 21/30

1/25/2020 Commit timestamps | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/commit-timestamp/ 22/30

Commit timestamps can only be written to columns annotated with the
allow_commit_timestamp=true option.

If you have mutations on rows in multiple tables, you must specify spanner.commit_timestamp() (or
the client library constant) for the commit timestamp column in each table.

The following example queries the commit timestamp column of the table.

1/25/2020 Commit timestamps | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/commit-timestamp/ 23/30

1/25/2020 Commit timestamps | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/commit-timestamp/ 24/30

1/25/2020 Commit timestamps | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/commit-timestamp/ 25/30

1/25/2020 Commit timestamps | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/commit-timestamp/ 26/30

1/25/2020 Commit timestamps | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/commit-timestamp/ 27/30

1/25/2020 Commit timestamps | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/commit-timestamp/ 28/30

1/25/2020 Commit timestamps | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/commit-timestamp/ 29/30

You can provide your own value for the commit timestamp column, instead of passing
spanner.commit_timestamp() (or client library constant) as the column value. The value must be a
timestamp in the past. This restriction ensures that writing timestamps is an inexpensive and fast
operation. An easy way to con�rm that a value is in the past is to compare it to the value returned by
the CURRENT_TIMESTAMP SQL function. The server returns a FailedPrecondition error if a future
timestamp is speci�ed.

Suppose that you want to create a changelog of every mutation that happens to a table and then use
that changelog for auditing. An example would be a table that stores the history of changes to word
processing documents. The commit timestamp makes creating the changelog easier, because the
timestamps can enforce ordering of the changelog entries. You could build a changelog that stores
the history of changes to a given document using a schema like the following example:

1/25/2020 Commit timestamps | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/commit-timestamp/ 30/30

To create a changelog, insert a new row in DocumentHistory in the same transaction in which you
insert or update a row in Document. In the insertion of the new row in DocumentHistory, use the
placeholder spanner.commit_timestamp() (or client library constant) to tell Cloud Spanner to write the
commit timestamp into column Ts. Interleaving the DocumentsHistory table with the Documents table
will allow for data locality and more e�cient inserts and updates. However, it also adds the
constraint that the parent and child rows must be deleted together. To keep the rows in
DocumentHistory after rows in Documents are deleted, do not interleave the tables.

The size of a row (/spanner/docs/schema-design#limit_row_size) should be less than 4 GB for best
performance. (The size of a row includes the top-level row and all of its interleaved child and index
rows.) In this example, there is a limit to how many rows there can be in DocumentHistory for a
particular document, because of the row size limit. If you expect the changelog in DocumentHistory to
be large, you can design your app to delete the oldest rows in DocumentHistory. Alternatively, you can
design your schema so that DocumentHistory is a top-level table instead of an interleaved table.

Use commit timestamps to create a change log with Go
 (https://cloud.google.com/community/tutorials/cloud-spanner-commit-timestamp-change-log).

https://cloud.google.com/spanner/docs/schema-design#limit_row_size
https://cloud.google.com/community/tutorials/cloud-spanner-commit-timestamp-change-log

