
1/25/2020 Data Types | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/data-types/ 1/14

Cloud Spanner supports simple data types such as integers, as well as more complex types such as
ARRAY and STRUCT. This page provides an overview of each data type, including allowed values.

The maximum size of a column value is 10MiB, which applies to scalar and array types.

Type Name
Valid Column
Type?

Valid Key Column
Type?

Valid SQL
Type?

Storage Size

ARRAY (#array-type) yes no yes The sum of the size of its elements

BOOL (#boolean-type) yes yes yes 1 byte

BYTES (#bytes-type) yes yes yes The number of bytes

DATE (#date-type) yes yes yes 4 bytes

FLOAT64
 (#�oating-point-type)

yes yes yes 8 bytes

INT64 (#integer-type) yes yes yes 8 bytes

STRING (#string-type) yes yes yes The number of bytes in its UTF-8
encoding

STRUCT (#struct-type) no no yes Not applicable

TIMESTAMP
 (#timestamp-type)

yes yes yes 12 bytes

 Each cell also has 8 bytes of storage overhead, in addition to the values listed.

When storing and querying data, it is helpful to keep the following data type properties in mind:

Property Description Applies To

Nullable NULL is a valid value. All data types.

1

1

1/25/2020 Data Types | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/data-types/ 2/14

Property Description Applies To

Orderable Can be used in an ORDER BY clause. All data types except for:

ARRAY

STRUCT

Groupable Can generally appear in an expression following
GROUP BY, DISTINCT, or PARTITION BY.
However, PARTITION BY expressions cannot include
the �oating point types FLOAT and DOUBLE.

All data types except for:
ARRAY

STRUCT

ComparableValues of the same type can be compared to each
other.

All data types, with the following exceptions:
ARRAY comparisons are not supported.

Equality comparisons for STRUCTs are supported
�eld by �eld, in �eld order. Field names are
ignored. Less than and greater than comparisons
are not supported.

All types that support comparisons can be used in
a JOIN condition. See JOIN Types
 (/spanner/docs/query-syntax#join_types) for an
explanation of join conditions.

Numeric types include integer types and �oating point types.

Integers are numeric values that do not have fractional components.

Name Storage Size Range

INT64 8 bytes -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

https://cloud.google.com/spanner/docs/query-syntax#join_types

1/25/2020 Data Types | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/data-types/ 3/14

Floating point values are approximate numeric values with fractional components.

Name Storage Size Description

FLOAT64 8 bytes Double precision (approximate) decimal values.

When working with �oating point numbers, there are special non-numeric values that need to be
considered: NaN and +/-inf

t the �oating point special values as Infinity, -Infinity, and NaN when using the Cloud Spanner REST and RPC A

cumented in TypeCode (REST) (/spanner/docs/reference/rest/v1/ResultSetMetadata#TypeCode) and TypeCode (RP

nner/docs/reference/rpc/google.spanner.v1#google.spanner.v1.TypeCode). The literals +inf, -inf, and nan are no

rted in the Cloud Spanner REST and RPC APIs.

Arithmetic operators provide standard IEEE-754 behavior for all �nite input values that produce �nite
output and for all operations for which at least one input is non-�nite.

Function calls and operators return an over�ow error if the input is �nite but the output would be non-
�nite. If the input contains non-�nite values, the output can be non-�nite. In general functions do not
introduce NaNs or +/-inf. However, speci�c functions like IEEE_DIVIDE can return non-�nite values on
�nite input. All such cases are noted explicitly in Mathematical functions
 (/spanner/docs/functions-and-operators#mathematical-functions).

Left Term Operator Right Term Returns

Any value + NaN NaN

1.0 + +inf +inf

1.0 + -inf -inf

-inf + +inf NaN

Maximum FLOAT64 value + Maximum FLOAT64 value Over�ow error

Minimum FLOAT64 value / 2.0 0.0

1.0 / 0.0 "Divide by zero" error

https://cloud.google.com/spanner/docs/reference/rest/v1/ResultSetMetadata#TypeCode
https://cloud.google.com/spanner/docs/reference/rpc/google.spanner.v1#google.spanner.v1.TypeCode
https://cloud.google.com/spanner/docs/functions-and-operators#mathematical-functions

1/25/2020 Data Types | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/data-types/ 4/14

Comparison operators provide standard IEEE-754 behavior for �oating point input.

Left Term Operator Right Term Returns

NaN = Any value FALSE

NaN < Any value FALSE

Any value < NaN FALSE

-0.0 = 0.0 TRUE

-0.0 < 0.0 FALSE

Floating point values are sorted in this order, from least to greatest:

1. NULL

2. NaN — All NaN values are considered equal when sorting.

3. -inf

4. Negative numbers

5. 0 or -0 — All zero values are considered equal when sorting.

6. Positive numbers

7. +inf

Special �oating point values are grouped this way, including both grouping done by a GROUP BY
clause and grouping done by the DISTINCT keyword:

NULL

NaN — All NaN values are considered equal when grouping.

-inf

0 or -0 — All zero values are considered equal when grouping.

+inf

1/25/2020 Data Types | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/data-types/ 5/14

Name Description

BOOL Boolean values are represented by the keywords TRUE and FALSE (case insensitive).

Name Description

STRING Variable-length character (Unicode) data.

Input STRING values must be UTF-8 encoded and output STRING values will be UTF-8 encoded.
Alternate encodings like CESU-8 and Modi�ed UTF-8 are not treated as valid UTF-8.

All functions and operators that act on STRING values operate on Unicode characters rather than
bytes. For example, functions like SUBSTR and LENGTH applied to STRING input count the number of
characters, not bytes.

Each Unicode character has a numeric value called a code point assigned to it. Lower code points are
assigned to lower characters. When characters are compared, the code points determine which
characters are less than or greater than other characters.

Most functions on STRING are also de�ned on BYTES. The BYTES version operates on raw bytes
rather than Unicode characters. STRING and BYTES are separate types that cannot be used
interchangeably. There is no implicit casting in either direction. Explicit casting between STRING and
BYTES does UTF-8 encoding and decoding. Casting BYTES to STRING returns an error if the bytes
are not valid UTF-8.

Name Description

BYTES Variable-length binary data.

STRING and BYTES are separate types that cannot be used interchangeably. Most functions on
STRING are also de�ned on BYTES. The BYTES version operates on raw bytes rather than Unicode
characters. Casts between STRING and BYTES enforce that the bytes are encoded using UTF-8.

1/25/2020 Data Types | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/data-types/ 6/14

Name Description Range

DATE Represents a logical calendar date. 0001-01-01 to 9999-12-31.

The DATE type represents a logical calendar date, independent of time zone. A DATE value does not
represent a speci�c 24-hour time period. Rather, a given DATE value represents a different 24-hour
period when interpreted in different time zones, and may represent a shorter or longer day during
Daylight Savings Time transitions. To represent an absolute point in time, use a timestamp.

YYYY: Four-digit year

[M]M: One or two digit month

[D]D: One or two digit day

Name Description Range

TIMESTAMPRepresents an absolute point in time, with
nanosecond precision.

0001-01-01 00:00:00 to 9999-12-31
23:59:59.999999999 UTC.

A timestamp represents an absolute point in time, independent of any time zone or convention such
as Daylight Savings Time.

TIMESTAMP provides nanosecond precision.

1/25/2020 Data Types | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/data-types/ 7/14

Follow the rules for encoding to and decoding from JSON values as described in TypeCode (RPC)
 (/spanner/docs/reference/rpc/google.spanner.v1#google.spanner.v1.TypeCode) and TypeCode (REST)
 (/spanner/docs/reference/rest/v1/ResultSetMetadata#TypeCode). In particular, the timestamp value must
end with an uppercase literal "Z" to specify Zulu time (UTC-0).

For example:

Timestamp values must be expressed in Zulu time and cannot include a UTC offset. For example, the
following timestamp is not supported:

Use the language-speci�c timestamp format.

YYYY: Four-digit year

[M]M: One or two digit month

[D]D: One or two digit day

(|T): A space or a `T` separator

[H]H: One or two digit hour (valid values from 00 to 23)

[M]M: One or two digit minutes (valid values from 00 to 59)

[S]S: One or two digit seconds (valid values from 00 to 59)

[.DDDDDDDDD]: Up to nine fractional digits (nanosecond precision)

https://cloud.google.com/spanner/docs/reference/rpc/google.spanner.v1#google.spanner.v1.TypeCode
https://cloud.google.com/spanner/docs/reference/rest/v1/ResultSetMetadata#TypeCode

1/25/2020 Data Types | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/data-types/ 8/14

[time zone]: String representing the time zone. See the time zones (#time-zones) section for
details.

Time zones are used when parsing timestamps or formatting timestamps for display. The timestamp
value itself does not store a speci�c time zone. A string-formatted timestamp may include a time
zone. When a time zone is not explicitly speci�ed, the default time zone, America/Los_Angeles, is
used.

Time zones are represented by strings in one of these two canonical formats:

Offset from Coordinated Universal Time (UTC), or the letter Z for UTC

Time zone name from the tz database (http://www.iana.org/time-zones)

When using this format, no space is allowed between the time zone and the rest of the timestamp.

http://www.iana.org/time-zones

1/25/2020 Data Types | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/data-types/ 9/14

Time zone names are from the tz database (http://www.iana.org/time-zones). For a less comprehensive
but simpler reference, see the List of tz database time zones
 (http://en.wikipedia.org/wiki/List_of_tz_database_time_zones) on Wikipedia.

When using a time zone name, a space is required between the name and the rest of the timestamp:

Note that not all time zone names are interchangeable even if they do happen to report the same time
during a given part of the year. For example, America/Los_Angeles reports the same time as UTC-7:00
during Daylight Savings Time, but reports the same time as UTC-8:00 outside of Daylight Savings
Time.

If a time zone is not speci�ed, the default time zone value is used.

A timestamp is simply an offset from 1970-01-01 00:00:00 UTC, assuming there are exactly 60
seconds per minute. Leap seconds are not represented as part of a stored timestamp.

If the input contains values that use ":60" in the seconds �eld to represent a leap second, that leap
second is not preserved when converting to a timestamp value. Instead that value is interpreted as a
timestamp with ":00" in the seconds �eld of the following minute.

Leap seconds do not affect timestamp computations. All timestamp computations are done using
Unix-style timestamps, which do not re�ect leap seconds. Leap seconds are only observable through

http://www.iana.org/time-zones
http://en.wikipedia.org/wiki/List_of_tz_database_time_zones

1/25/2020 Data Types | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/data-types/ 10/14



functions that measure real-world time. In these functions, it is possible for a timestamp second to be
skipped or repeated when there is a leap second.

Name Description

ARRAY Ordered list of zero or more elements of any non-ARRAY type.

An ARRAY is an ordered list of zero or more elements of non-ARRAY values. ARRAYs of ARRAYs are
not allowed. Queries that would produce an ARRAY of ARRAYs will return an error. Instead a STRUCT
must be inserted between the ARRAYs using the SELECT AS STRUCT construct.

An empty ARRAY and a NULL ARRAY are two distinct values. ARRAYs can contain NULL elements.

ARRAY types are declared using the angle brackets (< and >). The type of the elements of an ARRAY
can be arbitrarily complex with the exception that an ARRAY cannot directly contain another ARRAY.

Type Declaration Meaning

ARRAY<INT64> Simple ARRAY of 64-bit integers.

ARRAY<STRUCT<INT64,
INT64>>

An ARRAY of STRUCTs, each of which contains two 64-bit integers.

Note: ARRAY of STRUCTs values can be constructed by SQL expressions, but are
not supported as column types.

1/25/2020 Data Types | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/data-types/ 11/14



Type Declaration Meaning

ARRAY<ARRAY<INT64>>
(not supported)

This is an invalid type declaration which is included here just in case you came
looking for how to create a multi-level ARRAY. ARRAYs cannot contain ARRAYs
directly. Instead see the next example.

ARRAY<STRUCT<ARRAY<INT64>>>An ARRAY of ARRAYS of 64-bit integers. Notice that there is a STRUCT between
the two ARRAYs because ARRAYs cannot hold other ARRAYs directly.

Note: ARRAY of STRUCTs values can be constructed by SQL expressions, but are
not supported as column types.

etails about using STRUCTs in SELECT statements (/spanner/docs/query-syntax#using-structs-with-select) an
ueries (/spanner/docs/query-syntax#notes-about-subqueries) in the Query Syntax page.

Name Description

STRUCT Container of ordered �elds each with a type (required) and �eld name (optional).

STRUCT types are declared using the angle brackets (< and >). The type of the elements of a STRUCT
can be arbitrarily complex.

STRUCT values can be constructed by SQL expressions, but are not supported as column types.

https://cloud.google.com/spanner/docs/query-syntax#using-structs-with-select
https://cloud.google.com/spanner/docs/query-syntax#notes-about-subqueries

1/25/2020 Data Types | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/data-types/ 12/14

Type Declaration MeaningType Declaration Meaning

STRUCT<INT64> Simple STRUCT with a single unnamed 64-bit integer �eld.

STRUCT<x STRUCT<y INT64,
z INT64>>

A STRUCT with a nested STRUCT named x inside it. The STRUCT x has
two �elds, y and z, both of which are 64-bit integers.

STRUCT<inner_array ARRAY<INT64>>A STRUCT containing an ARRAY named inner_array that holds 64-bit
integer elements.

The output type is an anonymous STRUCT type with anonymous �elds with types matching the
types of the input expressions. There must be at least two expressions speci�ed. Otherwise this
syntax is indistinguishable from an expression wrapped with parentheses.

Syntax
Output
Type

Notes

(x,
x+y)

STRUCT<?,
?>

If column names are used (unquoted strings), the STRUCT �eld data type is derived from the
column data type. x and y are columns, so the data types of the STRUCT �elds are derived from
the column types and the output type of the addition operator.

This syntax can also be used with STRUCT comparison for comparison expressions using multi-part
keys, e.g. in a WHERE clause:

1/25/2020 Data Types | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/data-types/ 13/14

Duplicate �eld names are allowed. Fields without names are considered anonymous �elds and
cannot be referenced by name. STRUCT values can be NULL, or can have NULL �eld values.

Syntax Output Type

STRUCT(1,2,3) STRUCT<int64,int64,int64>

STRUCT() STRUCT<>

STRUCT('abc') STRUCT<string>

STRUCT(1, t.str_col) STRUCT<int64, str_col string>

STRUCT(1 AS a, 'abc' AS b) STRUCT<a int64, b string>

STRUCT(str_col AS abc) STRUCT<abc string>

Typed syntax allows constructing STRUCTs with an explicit STRUCT data type. The output type is
exactly the field_type provided. The input expression is coerced to field_type if the two types are
not the same, and an error is produced if the types are not compatible. AS alias is not allowed on the
input expressions. The number of expressions must match the number of �elds in the type, and the
expression types must be coercible or literal-coercible to the �eld types.

Syntax Output Type

STRUCT<int64>(5) STRUCT<int64>

1/25/2020 Data Types | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/data-types/ 14/14

Syntax Output Type

STRUCT<date>("2011-05-05") STRUCT<date>

STRUCT<x int64, y string>(1, t.str_col) STRUCT<x int64, y string>

STRUCT<int64>(int_col) STRUCT<int64>

STRUCT<x int64>(5 AS x) Error - Typed syntax does not allow AS

STRUCTs can be directly compared using equality operators:

Equal (=)

Not Equal (!= or <>)

[NOT] IN

Notice, though, that these direct equality comparisons compare the �elds of the STRUCT pairwise in
ordinal order ignoring any �eld names. If instead you want to compare identically named �elds of a
STRUCT, you can compare the individual �elds directly.

