
1/25/2020 Using the Dataflow connector | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/dataflow-connector 1/9

Data�ow (/data�ow/) is a managed service for transforming and enriching data. The Data�ow
connector for Cloud Spanner lets you read data from and write data to Cloud Spanner in a Data�ow
pipeline, optionally transforming or modifying the data. You can also create pipelines that transfer
data between Cloud Spanner and other Google Cloud products.

The Data�ow connector is the recommended method for e�ciently moving data into and out of
Cloud Spanner in bulk. When working with individual databases, there are other methods you can use
to import and export data:

Use the Cloud Console to export (/spanner/docs/export) an individual database from Cloud
Spanner to Cloud Storage in Avro (https://en.wikipedia.org/wiki/Apache_Avro) format.

Use the Cloud Console to import (/spanner/docs/import) a database back into Cloud Spanner
from �les you exported to Cloud Storage.

Use the REST API or gcloud command-line tool to run export
 (/data�ow/docs/templates/provided-templates#cloud_spanner_to_gcs_avro) or import
 (/data�ow/docs/templates/provided-templates#gcs_avro_to_cloud_spanner) jobs from Cloud Spanner
to Cloud Storage and back (also using Avro format).

The Data�ow connector for Cloud Spanner is part of the Apache Beam Java SDK
 (https://beam.apache.org/documentation/sdks/javadoc/current/), and it provides an API for performing the
above actions. See the Apache Beam programming guide
 (https://beam.apache.org/documentation/programming-guide/) for more information about some of the
concepts discussed below, such as PCollection objects and transforms.

The Data�ow connector for Cloud Spanner only supports the Data�ow SDK 2.x for Java. For more information, see

se notes: Data�ow SDK 2.x for Java (/data�ow/release-notes/release-notes-java-2).

To add the Google Cloud Data�ow connector to a Maven project, add the beam-sdks-java-io-
google-cloud-platform Maven artifact to your pom.xml �le as a dependency.

For example, assuming that your pom.xml �le sets beam.version to the appropriate version number,
you would add the following dependency:

https://cloud.google.com/dataflow/
https://cloud.google.com/spanner/docs/export
https://en.wikipedia.org/wiki/Apache_Avro
https://cloud.google.com/spanner/docs/import
https://cloud.google.com/dataflow/docs/templates/provided-templates#cloud_spanner_to_gcs_avro
https://cloud.google.com/dataflow/docs/templates/provided-templates#gcs_avro_to_cloud_spanner
https://beam.apache.org/documentation/sdks/javadoc/current/
https://beam.apache.org/documentation/programming-guide/
https://cloud.google.com/dataflow/release-notes/release-notes-java-2

1/25/2020 Using the Dataflow connector | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/dataflow-connector 2/9

/java-docs-samples/blob/master/data�ow/spanner-io/src/main/java/com/example/data�ow/SpannerRead.java)

To read from Cloud Spanner, apply the SpannerIO.read()
 (https://beam.apache.org/documentation/sdks/javadoc/current/org/apache/beam/sdk/io/gcp/spanner/Spanne
rIO.html#read--)

transform. Con�gure the read using the methods in the SpannerIO.Read
 (https://beam.apache.org/documentation/sdks/javadoc/current/org/apache/beam/sdk/io/gcp/spanner/Spanne
rIO.Read.html)

class. Applying the transform returns a PCollection<Struct>
 (https://beam.apache.org/documentation/sdks/javadoc/current/org/apache/beam/sdk/values/PCollection.html
)

, where each element in the collection represents an individual row returned by the read operation.
You can read from Cloud Spanner with and without a speci�c SQL query, depending on your desired
output.

Applying the SpannerIO.read() transform returns a consistent view of data by performing a strong
read. Unless you specify otherwise, the result of the read is snapshotted at the time that you started
the read. See reads (/spanner/docs/reads#read_types) for more information about the different types of
reads Cloud Spanner can perform.

To read a speci�c set of data from Cloud Spanner, con�gure the transform using the
SpannerIO.Read.withQuery()
 (https://beam.apache.org/documentation/sdks/javadoc/current/org/apache/beam/sdk/io/gcp/spanner/Spanne
rIO.Read.html#withQuery-java.lang.String-)

method to specify a SQL query. For example:

https://github.com/GoogleCloudPlatform/java-docs-samples/blob/master/dataflow/spanner-io/src/main/java/com/example/dataflow/SpannerRead.java
https://beam.apache.org/documentation/sdks/javadoc/current/org/apache/beam/sdk/io/gcp/spanner/SpannerIO.html#read--
https://beam.apache.org/documentation/sdks/javadoc/current/org/apache/beam/sdk/io/gcp/spanner/SpannerIO.Read.html
https://beam.apache.org/documentation/sdks/javadoc/current/org/apache/beam/sdk/values/PCollection.html
https://cloud.google.com/spanner/docs/reads#read_types
https://beam.apache.org/documentation/sdks/javadoc/current/org/apache/beam/sdk/io/gcp/spanner/SpannerIO.Read.html#withQuery-java.lang.String-

1/25/2020 Using the Dataflow connector | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/dataflow-connector 3/9

a-docs-samples/blob/master/data�ow/spanner-io/src/main/java/com/example/data�ow/SpannerReadApi.java)

To read from a database without using a query, you can specify a table name and a list of columns,
or you can read using an index. To read from selected columns, specify a table name and a list of
columns when you construct your transform using SpannerIO.read()
 (https://beam.apache.org/documentation/sdks/javadoc/current/org/apache/beam/sdk/io/gcp/spanner/Spanne
rIO.Read.html#withQuery-java.lang.String-)

. For example:

You can also read from the table using a speci�c set of keys as index values. To do so, build the read
using an index (/spanner/docs/secondary-indexes) that contains the desired key values with the
SpannerIO.Read.withIndex()
 (https://beam.apache.org/documentation/sdks/javadoc/current/org/apache/beam/sdk/io/gcp/spanner/Spanne
rIO.Read.html#withIndex-java.lang.String-)

method.

A transform is guaranteed to be executed on a consistent snapshot of data. To control the staleness
 (/spanner/docs/timestamp-bounds#timestamp_bound_types) of data, use the

https://github.com/GoogleCloudPlatform/java-docs-samples/blob/master/dataflow/spanner-io/src/main/java/com/example/dataflow/SpannerReadApi.java
https://beam.apache.org/documentation/sdks/javadoc/current/org/apache/beam/sdk/io/gcp/spanner/SpannerIO.Read.html#withQuery-java.lang.String-
https://cloud.google.com/spanner/docs/secondary-indexes
https://beam.apache.org/documentation/sdks/javadoc/current/org/apache/beam/sdk/io/gcp/spanner/SpannerIO.Read.html#withIndex-java.lang.String-
https://cloud.google.com/spanner/docs/timestamp-bounds#timestamp_bound_types

1/25/2020 Using the Dataflow connector | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/dataflow-connector 4/9

docs-samples/blob/master/data�ow/spanner-io/src/main/java/com/example/data�ow/TransactionalRead.java)

va-docs-samples/blob/master/data�ow/spanner-io/src/main/java/com/example/data�ow/SpannerReadAll.java)

SpannerIO.Read.withTimestampBound()
 (https://beam.apache.org/documentation/sdks/javadoc/current/org/apache/beam/sdk/io/gcp/spanner/Spanne
rIO.Read.html#withTimestampBound-com.google.cloud.spanner.TimestampBound-)

method. See transactions (/spanner/docs/transactions) for more information.

If you want to read data from multiple tables at the same point in time to ensure data consistency,
perform all of the reads in a single transaction. To do so, apply a createTransaction()
 (https://beam.apache.org/documentation/sdks/javadoc/current/org/apache/beam/sdk/io/gcp/spanner/Spanne
rIO.CreateTransaction.html)

transform, creating a PCollectionView<Transaction> object which then creates a transaction. The
resulting view can be passed to a read operation using SpannerIO.Read.withTransaction()
 (https://beam.apache.org/documentation/sdks/javadoc/current/org/apache/beam/sdk/io/gcp/spanner/Spanne
rIO.Read.html#withTransaction-org.apache.beam.sdk.values.PCollectionView-)

.

You can read data from all available tables in a Cloud Spanner database:

https://github.com/GoogleCloudPlatform/java-docs-samples/blob/master/dataflow/spanner-io/src/main/java/com/example/dataflow/TransactionalRead.java
https://github.com/GoogleCloudPlatform/java-docs-samples/blob/master/dataflow/spanner-io/src/main/java/com/example/dataflow/SpannerReadAll.java
https://beam.apache.org/documentation/sdks/javadoc/current/org/apache/beam/sdk/io/gcp/spanner/SpannerIO.Read.html#withTimestampBound-com.google.cloud.spanner.TimestampBound-
https://cloud.google.com/spanner/docs/transactions
https://beam.apache.org/documentation/sdks/javadoc/current/org/apache/beam/sdk/io/gcp/spanner/SpannerIO.CreateTransaction.html
https://beam.apache.org/documentation/sdks/javadoc/current/org/apache/beam/sdk/io/gcp/spanner/SpannerIO.Read.html#withTransaction-org.apache.beam.sdk.values.PCollectionView-

1/25/2020 Using the Dataflow connector | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/dataflow-connector 5/9

The Data�ow connector only supports Cloud Spanner SQL queries where the �rst operator in the
query execution plan is a Distributed Union (/spanner/docs/query-execution-operators#distributed_union).
If you attempt to read data from Cloud Spanner using a query and you get an exception stating that
the query does not have a DistributedUnion at the root, follow the steps in Understanding how
Cloud Spanner executes queries (/spanner/docs/sql-best-practices#how-execute-queries) to retrieve an
execution plan for your query using the Cloud Console.

If your SQL query isn't supported, simplify it to a query that has a distributed union as the �rst
operator in the query execution plan. Remove aggregate functions, as well as the operators DISTINCT,
GROUP BY, and ORDER, as they are the operators that are most likely to prevent the query from working.

Use the Mutation
 (https://googleapis.dev/java/google-cloud-clients/latest/com/google/cloud/spanner/Mutation.html) class's
newInsertOrUpdateBuilder()
 (https://googleapis.dev/java/google-cloud-
clients/latest/com/google/cloud/spanner/Mutation.html#newInsertOrUpdateBuilder-java.lang.String-)

method instead of the newInsertBuilder()
 (https://googleapis.dev/java/google-cloud-
clients/latest/com/google/cloud/spanner/Mutation.html#newInsertBuilder-java.lang.String-)

method unless absolutely necessary. Data�ow provides at-least-once guarantees, meaning that the
mutation is likely to be written several times. As a result, insert mutations are likely to generate errors
that cause the pipeline to fail. To prevent these errors, create insert-or-update mutations, which can be
applied more than once.

https://cloud.google.com/spanner/docs/query-execution-operators#distributed_union
https://cloud.google.com/spanner/docs/sql-best-practices#how-execute-queries
https://googleapis.dev/java/google-cloud-clients/latest/com/google/cloud/spanner/Mutation.html
https://googleapis.dev/java/google-cloud-clients/latest/com/google/cloud/spanner/Mutation.html#newInsertOrUpdateBuilder-java.lang.String-
https://googleapis.dev/java/google-cloud-clients/latest/com/google/cloud/spanner/Mutation.html#newInsertBuilder-java.lang.String-

1/25/2020 Using the Dataflow connector | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/dataflow-connector 6/9

/java-docs-samples/blob/master/data�ow/spanner-io/src/main/java/com/example/data�ow/SpannerWrite.java)

You can write data to Cloud Spanner with the Data�ow connector by using a SpannerIO.write()
 (https://beam.apache.org/documentation/sdks/javadoc/current/index.html?
org/apache/beam/sdk/io/gcp/spanner/SpannerIO.html)

transform to execute a collection of input row mutations. The Data�ow connector groups mutations
into batches for e�ciency.

The following example shows how to apply a write transform to a PCollection of mutations:

If a transform unexpectedly stops before completion, mutations that have already been applied will
not be rolled back.

The SpannerIO.write() transform does not guarantee that all of the mutations in the PCollection will be applied

cally, in a single transaction. If a small set of mutations must be applied atomically, see Applying groups of mutations

cally (#mutationgroup) below.

https://github.com/GoogleCloudPlatform/java-docs-samples/blob/master/dataflow/spanner-io/src/main/java/com/example/dataflow/SpannerWrite.java
https://beam.apache.org/documentation/sdks/javadoc/current/index.html?org/apache/beam/sdk/io/gcp/spanner/SpannerIO.html

1/25/2020 Using the Dataflow connector | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/dataflow-connector 7/9

ocs-samples/blob/master/data�ow/spanner-io/src/main/java/com/example/data�ow/SpannerGroupWrite.java)

You can use the MutationGroup
 (https://beam.apache.org/documentation/sdks/javadoc/current/index.html?
org/apache/beam/sdk/io/gcp/spanner/SpannerIO.html)

class to ensure that a group of mutations are applied together atomically. Mutations in a
MutationGroup are guaranteed to be submitted in the same transaction, but the transaction might be
retried.

Mutation groups perform best when they are used to group together mutations that affect data
stored close together in the key space. Because Cloud Spanner interleaves parent and child table
data together in the parent table, that data is always close together in the key space. We recommend
that you either structure your mutation group so that it contains one mutation that is applied to a
parent table and additional mutations that are applied to child tables, or so that all of its mutations
modify data that is close together in the key space. For more information about how Cloud Spanner
stores parent and child table data, see Schema and data model
 (/spanner/docs/schema-and-data-model#parent-child_table_relationships). If you don't organize your
mutation groups around the recommended table hierarchies, or if the data being accessed is not
close together in the key space, Cloud Spanner might need to perform two-phase commits, which will
result in slower performance. For more information, see Locality tradeoffs
 (/spanner/docs/whitepapers/optimizing-schema-design#tradeoffs_of_locality).

To use MutationGroup, build a SpannerIO.write() transform and call the
SpannerIO.Write.grouped()
 (https://beam.apache.org/documentation/sdks/javadoc/current/org/apache/beam/sdk/io/gcp/spanner/Spanne
rIO.Write.html#grouped--)

method, which returns a transform that you can then apply to a PCollection of MutationGroup
objects.

When creating a MutationGroup, the �rst mutation listed becomes the primary mutation. If your
mutation group affects both a parent and a child table, the primary mutation should be a mutation to
the parent table. Otherwise, you can use any mutation as the primary mutation. The Data�ow
connector uses the primary mutation to determine partition boundaries in order to e�ciently batch
mutations together.

For example, imagine that your application monitors behavior and �ags problematic user behavior
for review. For each �agged behavior, you want to update the Users table to block the user's access to
your application, and you also need to record the incident in the PendingReviews table. To make sure
that both of the tables are updated atomically, use a MutationGroup:

https://github.com/GoogleCloudPlatform/java-docs-samples/blob/master/dataflow/spanner-io/src/main/java/com/example/dataflow/SpannerGroupWrite.java
https://beam.apache.org/documentation/sdks/javadoc/current/index.html?org/apache/beam/sdk/io/gcp/spanner/SpannerIO.html
https://cloud.google.com/spanner/docs/schema-and-data-model#parent-child_table_relationships
https://cloud.google.com/spanner/docs/whitepapers/optimizing-schema-design#tradeoffs_of_locality
https://beam.apache.org/documentation/sdks/javadoc/current/org/apache/beam/sdk/io/gcp/spanner/SpannerIO.Write.html#grouped--

1/25/2020 Using the Dataflow connector | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/dataflow-connector 8/9

When creating a mutation group, the �rst mutation supplied as an argument becomes the primary
mutation. In this case, the two tables are unrelated, so there is no clear primary mutation. We've
selected userMutation as primary by placing it �rst. Applying the two mutations separately would be
faster, but wouldn't guarantee atomicity, so the mutation group is the best choice in this situation.

1/25/2020 Using the Dataflow connector | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/dataflow-connector 9/9

Learn more about designing an Apache Beam data pipeline
 (https://beam.apache.org/documentation/pipelines/design-your-pipeline/).

Learn how to export (/spanner/docs/export) and import (/spanner/docs/import) Cloud Spanner
databases in the Cloud Console using Data�ow.

https://beam.apache.org/documentation/pipelines/design-your-pipeline/
https://cloud.google.com/spanner/docs/export
https://cloud.google.com/spanner/docs/import

