
1/25/2020 Getting started with Cloud Spanner in Ruby  |  Google Cloud

https://cloud.google.com/spanner/docs/getting-started/ruby/ 1/27

This tutorial walks you through the following steps using the Cloud Spanner client library for
Ruby:

Create a Cloud Spanner instance and database.

Write, read, and execute SQL queries on data in the database.

Update the database schema.

Update data using a read-write transaction.

Add a secondary index to the database.

Use the index to read and execute SQL queries on data.

Retrieve data using a read-only transaction.

This tutorial uses Cloud Spanner, which is a billable component of the Google Cloud. For
information on the cost of using Cloud Spanner, see Pricing (/spanner/pricing).

1. Complete the steps described in Set up (/spanner/docs/getting-started/set-up), which covers
creating and setting a default Google Cloud project, enabling billing, enabling the Cloud
Spanner API, and setting up OAuth 2.0 to get authentication credentials to use the Cloud
Spanner API. 
In particular, ensure that you run gcloud auth application-default login
 (/sdk/gcloud/reference/auth/application-default/login) to set up your local development
environment with authentication credentials.

2. Install the following on your development machine if they are not already installed:

https://cloud.google.com/spanner/pricing
https://cloud.google.com/spanner/docs/getting-started/set-up
https://cloud.google.com/sdk/gcloud/reference/auth/application-default/login


1/25/2020 Getting started with Cloud Spanner in Ruby  |  Google Cloud

https://cloud.google.com/spanner/docs/getting-started/ruby/ 2/27

Ruby (https://www.ruby-lang.org/en/downloads/)

Bundler (https://bundler.io/#getting-started)

3. Clone the sample app repository to your local machine:

Alternatively, you can download the sample
 (https://github.com/GoogleCloudPlatform/ruby-docs-samples/archive/master.zip) as a zip �le and
extract it.

4. Change to the directory that contains the Cloud Spanner sample code:

5. Install dependencies:

6. Set the GOOGLE_CLOUD_PROJECT environment variable to your Google Cloud Platform
project ID:

When you �rst use Cloud Spanner, you must create an instance, which is an allocation of
resources that are used by Cloud Spanner databases. When you create an instance, you choose
an instance con�guration, which determines where your data is stored, and also the number of
nodes to use, which determines the amount of serving and storage resources in your instance.

https://www.ruby-lang.org/en/downloads/
https://bundler.io/#getting-started
https://github.com/GoogleCloudPlatform/ruby-docs-samples/archive/master.zip


1/25/2020 Getting started with Cloud Spanner in Ruby  |  Google Cloud

https://cloud.google.com/spanner/docs/getting-started/ruby/ 3/27

Execute the following command to create a Cloud Spanner instance in the region us-central1
with 1 node:

Note that this creates an instance with the following characteristics:

Instance ID test-instance

Display name Test Instance

Instance con�guration regional-us-central1 (Regional con�gurations store data in one
region, while multi-region con�gurations distribute data across multiple regions. Learn
more in Instances (/spanner/docs/instances).)

Node count of 1 (node_count corresponds to the amount of serving and storage resources
available to databases in the instance. Learn more in Node count
 (/spanner/docs/instances#node_count).)

You should see:

The samples repo contains a sample that shows how to use Cloud Spanner with Ruby.

Take a look through the spanner_samples.rb �le, which shows how to use Cloud Spanner. The
code shows how to create and use a new database. The data uses the example schema shown
in the Schema and data model (/spanner/docs/schema-and-data-model#creating-interleaved-tables)

page.

https://cloud.google.com/spanner/docs/instances
https://cloud.google.com/spanner/docs/instances#node_count
https://cloud.google.com/spanner/docs/schema-and-data-model#creating-interleaved-tables


1/25/2020 Getting started with Cloud Spanner in Ruby  |  Google Cloud

https://cloud.google.com/spanner/docs/getting-started/ruby/ 4/27

(https://github.com/GoogleCloudPlatform/ruby-docs-samples/blob/master/spanner/spanner_samples.rb)

Create a database called example-db in the instance called test-instance by running the
following at the command line.

You should see:

You have just created a Cloud Spanner database. The following is the code that created the
database.

https://github.com/GoogleCloudPlatform/ruby-docs-samples/blob/master/spanner/spanner_samples.rb


1/25/2020 Getting started with Cloud Spanner in Ruby  |  Google Cloud

https://cloud.google.com/spanner/docs/getting-started/ruby/ 5/27

GitHub (https://github.com/GoogleCloudPlatform/ruby-docs-samples/blob/master/spanner/quickstart.rb)

The code also de�nes two tables, Singers and Albums, for a basic music application. These
tables are used throughout this page. Take a look at the example schema
 (/spanner/docs/schema-and-data-model#creating-interleaved-tables) if you haven't already.

The next step is to write data to your database.

Before you can do reads or writes, you must create a Client
 (https://googleapis.dev/ruby/google-cloud-spanner/latest/Google/Cloud/Spanner/Client.html). You can
think of a Client as a database connection: all of your interactions with Cloud Spanner must
go through a Client. Typically you create a Client when your application starts up, then you re-
use that Client to read, write, and execute transactions. The following code shows how to
create a client.

https://github.com/GoogleCloudPlatform/ruby-docs-samples/blob/master/spanner/quickstart.rb
https://cloud.google.com/spanner/docs/schema-and-data-model#creating-interleaved-tables
https://googleapis.dev/ruby/google-cloud-spanner/latest/Google/Cloud/Spanner/Client.html


1/25/2020 Getting started with Cloud Spanner in Ruby  |  Google Cloud

https://cloud.google.com/spanner/docs/getting-started/ruby/ 6/27

(https://github.com/GoogleCloudPlatform/ruby-docs-samples/blob/master/spanner/spanner_samples.rb)

Read more in the Client
 (https://googleapis.dev/ruby/google-cloud-spanner/latest/Google/Cloud/Spanner/Client.html) reference.

You can insert data using Data Manipulation Language (DML) in a read-write transaction.

You use the execute_update() method to execute a DML statement.

https://github.com/GoogleCloudPlatform/ruby-docs-samples/blob/master/spanner/spanner_samples.rb
https://googleapis.dev/ruby/google-cloud-spanner/latest/Google/Cloud/Spanner/Client.html


1/25/2020 Getting started with Cloud Spanner in Ruby  |  Google Cloud

https://cloud.google.com/spanner/docs/getting-started/ruby/ 7/27

(https://github.com/GoogleCloudPlatform/ruby-docs-samples/blob/master/spanner/spanner_samples.rb)

Run the sample using the write_using_dml argument.

You should see:

You can also insert data using mutations (/spanner/docs/modify-mutation-api).

You write data using a Client
 (https://googleapis.dev/ruby/google-cloud-spanner/latest/Google/Cloud/Spanner/Client.html) object.
The Client#commit
 (https://googleapis.dev/ruby/google-cloud-spanner/latest/Google/Cloud/Spanner/Client.html#commit-
instance_method)

method creates and commits a transaction for writes that execute atomically at a single logical
point in time across columns, rows, and tables in a database.

This code shows how to write the data using mutations:

https://github.com/GoogleCloudPlatform/ruby-docs-samples/blob/master/spanner/spanner_samples.rb
https://cloud.google.com/spanner/docs/modify-mutation-api
https://googleapis.dev/ruby/google-cloud-spanner/latest/Google/Cloud/Spanner/Client.html
https://googleapis.dev/ruby/google-cloud-spanner/latest/Google/Cloud/Spanner/Client.html#commit-instance_method


1/25/2020 Getting started with Cloud Spanner in Ruby  |  Google Cloud

https://cloud.google.com/spanner/docs/getting-started/ruby/ 8/27

Run the sample using the insert_data argument.

You should see:



1/25/2020 Getting started with Cloud Spanner in Ruby  |  Google Cloud

https://cloud.google.com/spanner/docs/getting-started/ruby/ 9/27

Cloud Spanner supports a native SQL interface for reading data, which you can access on the
command line using the gcloud command-line tool or programmatically using the Cloud
Spanner client library for Ruby.

Execute the following SQL statement to read the values of all columns from the Albums table:

Note: See SQL syntax (/spanner/docs/query-syntax) for the Cloud Spanner SQL reference.

The result should be:

In addition to executing a SQL statement on the command line, you can issue the same SQL
statement programmatically using the Cloud Spanner client library for Ruby.

Use the Client#execute
 (https://googleapis.dev/ruby/google-cloud-spanner/latest/Google/Cloud/Spanner/Client.html#execute-
instance_method)

method to run the SQL query. Use a Ruby symbol :ColumnName to access data for a speci�c
column from a row.

Here's how to issue the query and access the data:

https://cloud.google.com/spanner/docs/query-syntax
https://googleapis.dev/ruby/google-cloud-spanner/latest/Google/Cloud/Spanner/Client.html#execute-instance_method


1/25/2020 Getting started with Cloud Spanner in Ruby  |  Google Cloud

https://cloud.google.com/spanner/docs/getting-started/ruby/ 10/27

(https://github.com/GoogleCloudPlatform/ruby-docs-samples/blob/master/spanner/spanner_samples.rb)

(https://github.com/GoogleCloudPlatform/ruby-docs-samples/blob/master/spanner/spanner_samples.rb)

Run the sample using the query_data argument.

You should see the following result:

You can include custom values in SQL statements using parameters. Here is an example of
using @lastName as a parameter in the WHERE clause to query records containing a speci�c value
for LastName.

https://github.com/GoogleCloudPlatform/ruby-docs-samples/blob/master/spanner/spanner_samples.rb
https://github.com/GoogleCloudPlatform/ruby-docs-samples/blob/master/spanner/spanner_samples.rb


1/25/2020 Getting started with Cloud Spanner in Ruby  |  Google Cloud

https://cloud.google.com/spanner/docs/getting-started/ruby/ 11/27

Run the sample using the query_with_parameter argument.

You should see the following result:

In addition to Cloud Spanner's SQL interface, Cloud Spanner also supports a read interface.

Use the Client#read
 (https://googleapis.dev/ruby/google-cloud-spanner/latest/Google/Cloud/Spanner/Client.html#read-
instance_method)

https://googleapis.dev/ruby/google-cloud-spanner/latest/Google/Cloud/Spanner/Client.html#read-instance_method


1/25/2020 Getting started with Cloud Spanner in Ruby  |  Google Cloud

https://cloud.google.com/spanner/docs/getting-started/ruby/ 12/27

(https://github.com/GoogleCloudPlatform/ruby-docs-samples/blob/master/spanner/spanner_samples.rb)

method of the Client
 (https://googleapis.dev/ruby/google-cloud-spanner/latest/Google/Cloud/Spanner/Client.html) class to
read rows from the database.

Here's how to read the data:

Run the sample using the read_data argument.

You should see output similar to:

https://github.com/GoogleCloudPlatform/ruby-docs-samples/blob/master/spanner/spanner_samples.rb
https://googleapis.dev/ruby/google-cloud-spanner/latest/Google/Cloud/Spanner/Client.html


1/25/2020 Getting started with Cloud Spanner in Ruby  |  Google Cloud

https://cloud.google.com/spanner/docs/getting-started/ruby/ 13/27

(https://github.com/GoogleCloudPlatform/ruby-docs-samples/blob/master/spanner/spanner_samples.rb)

Assume you need to add a new column called MarketingBudget to the Albums table. Adding a
new column to an existing table requires an update to your database schema. Cloud Spanner
supports schema updates to a database while the database continues to serve tra�c. Schema
updates do not require taking the database o�ine and they do not lock entire tables or
columns; you can continue writing data to the database during the schema update. Read more
about supported schema updates and schema change performance in Schema updates
 (/spanner/docs/schema-updates).

You can add a column on the command line using the gcloud command-line tool or
programmatically using the Cloud Spanner client library for Ruby.

Use the following ALTER TABLE (/spanner/docs/data-de�nition-language#alter_table) command to
add the new column to the table:

You should see:

Use the Database#update
 (https://googleapis.dev/ruby/google-cloud-spanner/latest/Google/Cloud/Spanner/Database.html#update-
instance_method)

method of the Database
 (https://googleapis.dev/ruby/google-cloud-spanner/latest/Google/Cloud/Spanner/Database.html) class
to modify the schema:

https://github.com/GoogleCloudPlatform/ruby-docs-samples/blob/master/spanner/spanner_samples.rb
https://cloud.google.com/spanner/docs/schema-updates
https://cloud.google.com/spanner/docs/data-definition-language#alter_table
https://googleapis.dev/ruby/google-cloud-spanner/latest/Google/Cloud/Spanner/Database.html#update-instance_method
https://googleapis.dev/ruby/google-cloud-spanner/latest/Google/Cloud/Spanner/Database.html


1/25/2020 Getting started with Cloud Spanner in Ruby  |  Google Cloud

https://cloud.google.com/spanner/docs/getting-started/ruby/ 14/27

(https://github.com/GoogleCloudPlatform/ruby-docs-samples/blob/master/spanner/spanner_samples.rb)

Run the sample using the add_column argument.

You should see:

The following code writes data to the new column. It sets MarketingBudget to 100000 for the
row keyed by Albums(1, 1) and to 500000 for the row keyed by Albums(2, 2).

https://github.com/GoogleCloudPlatform/ruby-docs-samples/blob/master/spanner/spanner_samples.rb


1/25/2020 Getting started with Cloud Spanner in Ruby  |  Google Cloud

https://cloud.google.com/spanner/docs/getting-started/ruby/ 15/27

(https://github.com/GoogleCloudPlatform/ruby-docs-samples/blob/master/spanner/spanner_samples.rb)

Run the sample using the update_data argument.

You should see:

You can also execute a SQL query or a read call to fetch the values that you just wrote.

Here's the code to execute the query:

https://github.com/GoogleCloudPlatform/ruby-docs-samples/blob/master/spanner/spanner_samples.rb


1/25/2020 Getting started with Cloud Spanner in Ruby  |  Google Cloud

https://cloud.google.com/spanner/docs/getting-started/ruby/ 16/27

(https://github.com/GoogleCloudPlatform/ruby-docs-samples/blob/master/spanner/spanner_samples.rb)

To execute this query, run the sample using the query_data_with_new_column argument.

You should see:

You can update data using DML in a read-write transaction.

You use the execute_update() method to execute a DML statement.

https://github.com/GoogleCloudPlatform/ruby-docs-samples/blob/master/spanner/spanner_samples.rb


1/25/2020 Getting started with Cloud Spanner in Ruby  |  Google Cloud

https://cloud.google.com/spanner/docs/getting-started/ruby/ 17/27

Run the sample using the write_with_transaction_using_dml argument.

You should see:



1/25/2020 Getting started with Cloud Spanner in Ruby  |  Google Cloud

https://cloud.google.com/spanner/docs/getting-started/ruby/ 18/27

Note: You can also update data using mutations

 (/spanner/docs/modify-mutation-api#updating_rows_in_a_table).

Suppose you wanted to fetch all rows of Albums that have AlbumTitle values in a certain range.
You could read all values from the AlbumTitle column using a SQL statement or a read call,
and then discard the rows that don't meet the criteria, but doing this full table scan is expensive,
especially for tables with a lot of rows. Instead you can speed up the retrieval of rows when
searching by non-primary key columns by creating a secondary index
 (/spanner/docs/secondary-indexes) on the table.

Adding a secondary index to an existing table requires a schema update. Like other schema
updates, Cloud Spanner supports adding an index while the database continues to serve tra�c.
Cloud Spanner automatically back�lls the index with your existing data. Back�lls might take a
few minutes to complete, but you don't need to take the database o�ine or avoid writing to the
indexed table during this process. For more details, see index back�lling
 (/spanner/docs/secondary-indexes#adding_an_index).

After you add a secondary index, Cloud Spanner automatically uses it for SQL queries that are
likely to run faster with the index. If you use the read interface, you must specify the index that
you want to use.

You can add an index on the command line using the gcloud command line tool or
programmatically using the Cloud Spanner client library for Ruby.

Use the following CREATE INDEX (/spanner/docs/data-de�nition-language#create_index) command to
add an index to the database:

https://cloud.google.com/spanner/docs/modify-mutation-api#updating_rows_in_a_table
https://cloud.google.com/spanner/docs/secondary-indexes
https://cloud.google.com/spanner/docs/secondary-indexes#adding_an_index
https://cloud.google.com/spanner/docs/data-definition-language#create_index


1/25/2020 Getting started with Cloud Spanner in Ruby  |  Google Cloud

https://cloud.google.com/spanner/docs/getting-started/ruby/ 19/27

(https://github.com/GoogleCloudPlatform/ruby-docs-samples/blob/master/spanner/spanner_samples.rb)

You should see:

Use the Database#update
 (https://googleapis.dev/ruby/google-cloud-spanner/latest/Google/Cloud/Spanner/Database.html#update-
instance_method)

method of the Database
 (https://googleapis.dev/ruby/google-cloud-spanner/latest/Google/Cloud/Spanner/Database.html) class
to add an index:

Run the sample using the create_index argument.

https://github.com/GoogleCloudPlatform/ruby-docs-samples/blob/master/spanner/spanner_samples.rb
https://googleapis.dev/ruby/google-cloud-spanner/latest/Google/Cloud/Spanner/Database.html#update-instance_method
https://googleapis.dev/ruby/google-cloud-spanner/latest/Google/Cloud/Spanner/Database.html


1/25/2020 Getting started with Cloud Spanner in Ruby  |  Google Cloud

https://cloud.google.com/spanner/docs/getting-started/ruby/ 20/27

(https://github.com/GoogleCloudPlatform/ruby-docs-samples/blob/master/spanner/spanner_samples.rb)

Adding an index can take a few minutes. After the index is added, you should see:

For SQL queries, Cloud Spanner automatically uses an appropriate index. In the read interface,
you must specify the index in your request.

To use the index in the read interface, provide an index parameter to the read
 (https://googleapis.dev/ruby/google-cloud-spanner/latest/Google/Cloud/Spanner/Client.html#read-
instance_method)

method of the Client
 (https://googleapis.dev/ruby/google-cloud-spanner/latest/Google/Cloud/Spanner/Client.html) class.

https://github.com/GoogleCloudPlatform/ruby-docs-samples/blob/master/spanner/spanner_samples.rb
https://googleapis.dev/ruby/google-cloud-spanner/latest/Google/Cloud/Spanner/Client.html#read-instance_method
https://googleapis.dev/ruby/google-cloud-spanner/latest/Google/Cloud/Spanner/Client.html


1/25/2020 Getting started with Cloud Spanner in Ruby  |  Google Cloud

https://cloud.google.com/spanner/docs/getting-started/ruby/ 21/27

Run the sample using the read_data_with_index argument.

You should see:

You might have noticed that the read example above did not include reading the
MarketingBudget column. This is because Cloud Spanner's read interface does not support the
ability to join an index with a data table to look up values that are not stored in the index.

Create an alternate de�nition of AlbumsByAlbumTitle that stores a copy of MarketingBudget in
the index.

Adding an index can take a few minutes. After the index is added, you should see:



1/25/2020 Getting started with Cloud Spanner in Ruby  |  Google Cloud

https://cloud.google.com/spanner/docs/getting-started/ruby/ 22/27

(https://github.com/GoogleCloudPlatform/ruby-docs-samples/blob/master/spanner/spanner_samples.rb)

Use the Database#update
 (https://googleapis.dev/ruby/google-cloud-spanner/latest/Google/Cloud/Spanner/Database.html#update-
instance_method)

method of the Database
 (https://googleapis.dev/ruby/google-cloud-spanner/latest/Google/Cloud/Spanner/Database.html) class
to add an index with a STORING clause:

Run the sample using the create_storing_index argument.

You should see:

https://github.com/GoogleCloudPlatform/ruby-docs-samples/blob/master/spanner/spanner_samples.rb
https://googleapis.dev/ruby/google-cloud-spanner/latest/Google/Cloud/Spanner/Database.html#update-instance_method
https://googleapis.dev/ruby/google-cloud-spanner/latest/Google/Cloud/Spanner/Database.html


1/25/2020 Getting started with Cloud Spanner in Ruby  |  Google Cloud

https://cloud.google.com/spanner/docs/getting-started/ruby/ 23/27

(https://github.com/GoogleCloudPlatform/ruby-docs-samples/blob/master/spanner/spanner_samples.rb)

Now you can execute a read that fetches all AlbumId, AlbumTitle, and MarketingBudget
columns from the AlbumsByAlbumTitle2 index:

Run the sample using the read_data_with_storing_index argument.

You should see output similar to:

https://github.com/GoogleCloudPlatform/ruby-docs-samples/blob/master/spanner/spanner_samples.rb


1/25/2020 Getting started with Cloud Spanner in Ruby  |  Google Cloud

https://cloud.google.com/spanner/docs/getting-started/ruby/ 24/27

(https://github.com/GoogleCloudPlatform/ruby-docs-samples/blob/master/spanner/spanner_samples.rb)

Suppose you want to execute more than one read at the same timestamp. Read-only
transactions (/spanner/docs/transactions#read-only_transactions) observe a consistent pre�x of the
transaction commit history, so your application always gets consistent data. Use a Snapshot
 (https://googleapis.dev/ruby/google-cloud-spanner/latest/Google/Cloud/Spanner/Snapshot.html) object
for executing read-only transactions. Use the snapshot
 (https://googleapis.dev/ruby/google-cloud-spanner/latest/Google/Cloud/Spanner/Client.html#snapshot-
instance_method)

method of the Client
 (https://googleapis.dev/ruby/google-cloud-spanner/latest/Google/Cloud/Spanner/Client.html) class to
get a Snapshot object.

The following shows how to run a query and perform a read in the same read-only transaction:

Run the sample using the read_only_transaction argument.

https://github.com/GoogleCloudPlatform/ruby-docs-samples/blob/master/spanner/spanner_samples.rb
https://cloud.google.com/spanner/docs/transactions#read-only_transactions
https://googleapis.dev/ruby/google-cloud-spanner/latest/Google/Cloud/Spanner/Snapshot.html
https://googleapis.dev/ruby/google-cloud-spanner/latest/Google/Cloud/Spanner/Client.html#snapshot-instance_method
https://googleapis.dev/ruby/google-cloud-spanner/latest/Google/Cloud/Spanner/Client.html


1/25/2020 Getting started with Cloud Spanner in Ruby  |  Google Cloud

https://cloud.google.com/spanner/docs/getting-started/ruby/ 25/27

You should see output similar to:

To avoid incurring additional charges to your Google Cloud account for the resources used in
this tutorial, drop the database and delete the instance that you created.

If you delete an instance, all databases within it are automatically deleted. This step shows
how to delete a database without deleting an instance (you would still incur charges for the
instance).



1/25/2020 Getting started with Cloud Spanner in Ruby  |  Google Cloud

https://cloud.google.com/spanner/docs/getting-started/ruby/ 26/27

1. Go to the Cloud Spanner Instances page in the Google Cloud Console.

Go to the Instances page (https://console.cloud.google.com/spanner/instances)

2. Click the instance.

3. Click the database that you want to delete.

4. In the Database details page, click Delete.

5. Con�rm that you want to delete the database and click Delete.

Deleting an instance automatically drops all databases created in that instance.

1. Go to the Cloud Spanner Instances page in the Google Cloud Console.

Go to the Instances page (https://console.cloud.google.com/spanner/instances)

2. Click your instance.

3. Click Delete.

4. Con�rm that you want to delete the instance and click Delete.

Access Cloud Spanner in a virtual machine instance
 (/spanner/docs/con�gure-virtual-machine-instance): create a virtual machine instance with access
to your Cloud Spanner database.

https://console.cloud.google.com/spanner/instances
https://console.cloud.google.com/spanner/instances
https://cloud.google.com/spanner/docs/configure-virtual-machine-instance


1/25/2020 Getting started with Cloud Spanner in Ruby  |  Google Cloud

https://cloud.google.com/spanner/docs/getting-started/ruby/ 27/27

Learn about authorization and authentication credentials in Getting started with
authentication (/docs/authentication/getting-started).

Learn more Cloud Spanner concepts (/spanner/docs/concepts).

https://cloud.google.com/docs/authentication/getting-started
https://cloud.google.com/spanner/docs/concepts

