
1/25/2020 Migrating from PostgreSQL to Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/migrating-postgres-spanner/ 1/13

This page provides guidance on migrating a PostgreSQL database to Cloud Spanner. It describes
several aspects of a PostgreSQL to Cloud Spanner migration:

Mapping a PostgreSQL schema to a Cloud Spanner schema.

Creating a Cloud Spanner instance, database, and schema.

Refactoring the application to work with your Cloud Spanner database.

Migrating your data.

Verifying the new system and moving it to production status.

This page also provides some example schemas using tables from the MusicBrainz
 (https://musicbrainz.org/doc/MusicBrainz_Database) PostgreSQL database.

Your �rst step in moving a database from PostgreSQL to Cloud Spanner is to determine what
schema changes you must make. Use pg_dump
 (https://www.postgresql.org/docs/current/static/app-pgdump.html) to create Data De�nition Language

(DDL) statements that de�ne the objects in your PostgreSQL database, and then modify the
statements as described in the following sections. After you update the DLL statements, use the DDL
statements to create your database in a Cloud Spanner instance.

The following table describes how PostgreSQL data types
 (https://www.postgresql.org/docs/current/static/datatype.html) map to Cloud Spanner data types. Update

the data types in your DDL statements from PostgreSQL data types to Cloud Spanner data types.

PostgreSQL Cloud Spanner

Bigint

int8

INT64

https://musicbrainz.org/doc/MusicBrainz_Database
https://www.postgresql.org/docs/current/static/app-pgdump.html
https://www.postgresql.org/docs/current/static/datatype.html

1/25/2020 Migrating from PostgreSQL to Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/migrating-postgres-spanner/ 2/13

PostgreSQL Cloud Spanner

Bigserial

serial8

INT64

Note: There is no auto-increment capability in Cloud Spanner.

bit [(n)] ARRAY<BOOL>

bit varying [(n)]

varbit [(n)]

ARRAY<BOOL>

Boolean

bool

BOOL

box ARRAY<FLOAT64>

bytea BYTES

character [(n)]

char [(n)]

STRING

character varying [
(n)]

varchar [(n)]

STRING

cidr STRING, using standard CIDR
 (https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing) notation.

circle ARRAY<FLOAT64>

date DATE

double precision

float8

FLOAT64

inet STRING

Integer

int

int4

INT64

https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing

1/25/2020 Migrating from PostgreSQL to Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/migrating-postgres-spanner/ 3/13

PostgreSQL Cloud Spanner

interval[fields] [
(p)]

INT64 if storing the value in milliseconds, or STRING if storing the value in an
application-de�ned interval format.

json STRING

jsonb BYTES

line ARRAY<FLOAT64>

lseg ARRAY<FLOAT64>

macaddr STRING, using standard MAC address (https://en.wikipedia.org/wiki/MAC_address)
notation.

money INT64, or STRING for arbitrary precision numbers
 (/spanner/docs/storing-numeric-data).

numeric [(p, s)]

decimal [(p, s)]

INT64, or STRING for arbitrary precision numbers
 (/spanner/docs/storing-numeric-data).

path ARRAY<FLOAT64>

pg_lsn This data type is PostgreSQL-speci�c, so there isn't a Cloud Spanner equivalent.

point ARRAY<FLOAT64>

polygon ARRAY<FLOAT64>

Real

float4

FLOAT64

Smallint

int2

INT64

Smallserial

serial2

INT64

Serial

serial4

INT64

text STRING

time [(p)] [
without time zone]

STRING, using HH:MM:SS.sss notation.

https://en.wikipedia.org/wiki/MAC_address
https://cloud.google.com/spanner/docs/storing-numeric-data
https://cloud.google.com/spanner/docs/storing-numeric-data

1/25/2020 Migrating from PostgreSQL to Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/migrating-postgres-spanner/ 4/13

PostgreSQL Cloud Spanner

time [(p)] with
time zone

timetz

STRING, using HH:MM:SS.sss+ZZZZ notation. Alternately, this can be broken up into
two columns, one of type TIMESTAMP and another one holding the timezone.

timestamp [(p)] [
without time zone]

No equivalent. You may store as a STRING or TIMESTAMP at your discretion.

timestamp [(p)]
with time zone

timestamptz

TIMESTAMP

tsquery No equivalent. De�ne a storage mechanism in your application instead.

tsvector No equivalent. De�ne a storage mechanism in your application instead.

txid_snapshot No equivalent. De�ne a storage mechanism in your application instead.

uuid STRING or BYTES

xml STRING

For tables in your Cloud Spanner database that you frequently append to, avoid using primary keys
that monotonically increase or decrease, as this approach causes hotspots during writes. Instead,
modify the DDL CREATE TABLE statements so that they use supported primary key strategies
 (/spanner/docs/schema-design#choosing_a_primary_key_to_prevent_hotspots). Careful schema design is
important, because you can't add or remove a primary key column after you create a table.

During migration, you might need to keep some existing monotonically increasing integer keys. If you
need to keep these kinds of keys on a frequently updated table with a lot of operations on these keys,
you can avoid creating hotspots by pre�xing the existing key with a pseudo-random number. This
technique causes Cloud Spanner to redistribute the rows. See What DBAs need to know about Cloud
Spanner, part 1: Keys and indexes
 (https://cloudplatform.googleblog.com/2018/06/What-DBAs-need-to-know-about-Cloud-Spanner-part-1-Keys-
and-indexes.html)

for more information on using this approach.

https://cloud.google.com/spanner/docs/schema-design#choosing_a_primary_key_to_prevent_hotspots
https://cloudplatform.googleblog.com/2018/06/What-DBAs-need-to-know-about-Cloud-Spanner-part-1-Keys-and-indexes.html

1/25/2020 Migrating from PostgreSQL to Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/migrating-postgres-spanner/ 5/13

Cloud Spanner doesn't have foreign key constraints or triggers. If you rely on these features, you must
move this functionality to your application.

When there is a parent-child relationship between tables, and you want the records in those tables co-
located for faster access, you can create interleaved tables
 (/spanner/docs/schema-and-data-model#creating-interleaved-tables). When you use an interleaved table,
you can choose to enforce referential integrity to delete rows in the child table when the related row in
the parent table is deleted. You can't delete the parent row if there are child rows and you used the ON
DELETE NO ACTION (/spanner/docs/data-de�nition-language#create_table) clause. You also can't add a
child row if the parent row doesn't exist.

To �nd the foreign keys on your PostgreSQL tables, query the
information_schema.table_constraints
 (https://www.postgresql.org/docs/current/static/infoschema-table-constraints.html) view using a WHERE
constraint_type = 'FOREIGN KEY' clause.

Update the CREATE TABLE statements so that they create interleaved tables as appropriate.

PostgreSQL b-tree indexes (https://www.postgresql.org/docs/10/static/indexes-types.html) are similar to
secondary indexes (/spanner/docs/secondary-indexes) in Cloud Spanner. In a Cloud Spanner database
you use secondary indexes to index commonly searched columns for better performance, and to
replace any unique constraints speci�ed in your tables. For example, if your PostgreSQL DDL has this
statement:

You would use this statement in your Cloud Spanner DDL:

https://cloud.google.com/spanner/docs/schema-and-data-model#creating-interleaved-tables
https://cloud.google.com/spanner/docs/data-definition-language#create_table
https://www.postgresql.org/docs/current/static/infoschema-table-constraints.html
https://www.postgresql.org/docs/10/static/indexes-types.html
https://cloud.google.com/spanner/docs/secondary-indexes

1/25/2020 Migrating from PostgreSQL to Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/migrating-postgres-spanner/ 6/13

You can �nd the indexes for any of your PostgreSQL tables by running the \di
 (https://www.postgresql.org/docs/10/static/app-psql.html) meta-command in psql.

After you determine the indexes that you need, add CREATE INDEX
 (/spanner/docs/data-de�nition-language#create_index) statements to create them. Follow the guidance at
Creating indexes (/spanner/docs/schema-design#creating-indexes).

Cloud Spanner implements indexes as tables, so indexing monotonically increasing columns (like
those containing TIMESTAMP data) can cause a hotspot. See What DBAs need to know about Cloud
Spanner, part 1: Keys and indexes
 (https://cloudplatform.googleblog.com/2018/06/What-DBAs-need-to-know-about-Cloud-Spanner-part-1-Keys-
and-indexes.html)

for more information on methods to avoid hotspots.

You must create the functionality of the following objects in your application logic:

Views

Triggers

Stored procedures

User-de�ned functions (UDFs)

Columns that use serial data types as sequence generators

Keep the following tips in mind when migrating this functionality into application logic:

You must migrate any SQL statements you use from the PostgreSQL SQL dialect to the Cloud
Spanner SQL dialect (/spanner/docs/query-syntax).

If you use cursors (https://www.postgresql.org/docs/current/static/plpgsql-cursors.html), you can
rework the query to use offsets and limits
 (/spanner/docs/query-syntax#limit-clause-and-offset-clause).

https://www.postgresql.org/docs/10/static/app-psql.html
https://cloud.google.com/spanner/docs/data-definition-language#create_index
https://cloud.google.com/spanner/docs/schema-design#creating-indexes
https://cloudplatform.googleblog.com/2018/06/What-DBAs-need-to-know-about-Cloud-Spanner-part-1-Keys-and-indexes.html
https://cloud.google.com/spanner/docs/query-syntax
https://www.postgresql.org/docs/current/static/plpgsql-cursors.html
https://cloud.google.com/spanner/docs/query-syntax#limit-clause-and-offset-clause

1/25/2020 Migrating from PostgreSQL to Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/migrating-postgres-spanner/ 7/13

After you update your DDL statements to conform to Cloud Spanner schema requirements, use it to
create your database in Cloud Spanner.

1. Create a Cloud Spanner instance (/spanner/docs/create-manage-instances#creating_an_instance).
Follow the guidance in Instances (/spanner/docs/instances) to determine the correct regional
con�guration and number of nodes to support your performance goals.

2. Create the database by using either the Google Cloud Console or the gcloud
 (/spanner/docs/gcloud-spanner) command-line tool:

https://cloud.google.com/spanner/docs/create-manage-instances#creating_an_instance
https://cloud.google.com/spanner/docs/instances
https://cloud.google.com/spanner/docs/gcloud-spanner

1/25/2020 Migrating from PostgreSQL to Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/migrating-postgres-spanner/ 8/13

After you create the database, follow the instructions in Applying IAM Roles
 (/spanner/docs/grant-permissions) to create user accounts and grant permissions to the Cloud Spanner
instance and database.

In addition to the code needed to replace the preceding database objects (#other-database-objects), you
must add application logic to handle the following functionality:

Hashing primary keys for writes, for tables that have high write rates to sequential keys.

Validating data, to replace constraints that you could not migrate from the PostgreSQL
schema.

Referential integrity checks not already covered by table interleaving or application logic,
including functionality handled by triggers in the PostgreSQL schema.

We recommend using the following process when refactoring:

1. Find all of your application code that accesses the database, and refactor it into a single
module or library. That way, you know exactly what code accesses to the database, and
therefore exactly what code needs to be modi�ed.

2. Write code that performs reads and writes on the Cloud Spanner instance, providing parallel
functionality to the original code that reads and writes to PostgreSQL. During writes, update the
entire row, not just the columns that have been changed, to ensure that the data in Cloud
Spanner is identical to that in PostgreSQL.

3. Write code that replaces the functionality of the database objects and functions that aren't
available in Cloud Spanner.

After you create your Cloud Spanner database and refactor your application code, you can migrate
your data to Cloud Spanner.

https://cloud.google.com/spanner/docs/grant-permissions

1/25/2020 Migrating from PostgreSQL to Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/migrating-postgres-spanner/ 9/13

1. Use the PostgreSQL COPY (https://www.postgresql.org/docs/10/static/sql-copy.html) command to
dump data to .csv �les.

2. Upload the .csv �les to Cloud Storage.

a. Create a Cloud Storage bucket (/storage/docs/creating-buckets).

b. In the Cloud Storage console, click on the bucket name to open the bucket browser.

c. Click Upload Files.

d. Navigate to the directory containing the .csv �les and select them.

e. Click Open.

3. Create an application to import data into Cloud Spanner. This application could use Data�ow
 (/spanner/docs/data�ow-connector#writing-transforming) or it could use the client libraries
 (/spanner/docs/reference/libraries) directly. Make sure to follow the guidance in Bulk data loading
best practices (/spanner/docs/bulk-loading) to get the best performance.

Test all application functions against the Cloud Spanner instance to verify that they work as
expected. Run production-level workloads to ensure the performance meets your needs. Update the
number of nodes (/spanner/docs/create-manage-instances#changing_the_number_of_nodes) as needed to
meet your performance goals.

After you complete the initial application testing, turn up the new system using one of the following
processes. O�ine migration is the simplest way to migrate. However, this approach makes your
application unavailable for a period of time, and it provides no rollback path if you �nd data issues
later on. To perform an o�ine migration:

1. Delete all the data in the Cloud Spanner database.

2. Shut down the application that targets the PostgreSQL database.

3. Export all data from the PostgreSQL database and import it into the Cloud Spanner database
as described in Migrating data (#migrating-data).

4. Start up the application that targets the Cloud Spanner database.

https://www.postgresql.org/docs/10/static/sql-copy.html
https://cloud.google.com/storage/docs/creating-buckets
https://cloud.google.com/spanner/docs/dataflow-connector#writing-transforming
https://cloud.google.com/spanner/docs/reference/libraries
https://cloud.google.com/spanner/docs/bulk-loading
https://cloud.google.com/spanner/docs/create-manage-instances#changing_the_number_of_nodes

1/25/2020 Migrating from PostgreSQL to Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/migrating-postgres-spanner/ 10/13

Live migration is possible and requires extensive changes to your application to support the
migration.

These examples show the CREATE TABLE statements for several tables in the MusicBrainz
 (https://musicbrainz.org/) PostgreSQL database schema
 (https://musicbrainz.org/doc/MusicBrainz_Database/Schema). Each example includes both the

PostgreSQL schema and the Cloud Spanner schema.

PostgreSQL version:

https://musicbrainz.org/
https://musicbrainz.org/doc/MusicBrainz_Database/Schema

1/25/2020 Migrating from PostgreSQL to Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/migrating-postgres-spanner/ 11/13

Cloud Spanner version:

PostgreSQL version:

Cloud Spanner version:

1/25/2020 Migrating from PostgreSQL to Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/migrating-postgres-spanner/ 12/13

PostgreSQL version:

Cloud Spanner version:

1/25/2020 Migrating from PostgreSQL to Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/migrating-postgres-spanner/ 13/13

