
1/25/2020 Query execution plans | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/query-execution-plans 1/14

This page provides concepts about query execution plans and how they are used by Cloud Spanner
to perform queries in a distributed environment. To learn how to retrieve an execution plan for a
speci�c query using the Cloud Console, see Understanding how Cloud Spanner executes queries
 (/spanner/docs/sql-best-practices#how-execute-queries).

Cloud Spanner uses declarative SQL statements to query its databases. SQL statements de�ne what
the user wants without specifying how to obtain the results. A query execution plan is the set of steps
for how the results are obtained. For a given SQL statement, there may be multiple ways to obtain the
results. The Cloud Spanner query compiler evaluates the different ways to produce a query execution
plan that is considered the most e�cient. Cloud Spanner then uses the execution plan to retrieve the
results.

Conceptually, an execution plan is a tree of relational operators. Each operator reads rows from its
input(s) and produces output rows. The result of the operator at the root of the execution is returned
as the result of the SQL query.

As an example, this query:

results in a query execution plan that can be visualized as:

https://cloud.google.com/spanner/docs/sql-best-practices#how-execute-queries

1/25/2020 Query execution plans | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/query-execution-plans 2/14

SELECT s.SongName
FROM Songs AS s

Distributed Union

Local Distributed Union

Serialize Result

Result.SongName:$SongName

Index scan

Index: SongsBySingerAlbumSongNameDesc
$SongName:=SongName

The queries and execution plans on this page are based on the following database schema:

1/25/2020 Query execution plans | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/query-execution-plans 3/14

You can use the following Data Manipulation Language (DML) statements to add data to these
tables:

1/25/2020 Query execution plans | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/query-execution-plans 4/14

You can run queries and retrieve execution plans even if the tables have no data.

Obtaining e�cient execution plans is challenging because Cloud Spanner divides data into splits
 (/spanner/docs/schema-and-data-model#database-splits). Splits can move independently from each other
and get assigned to different servers, which could be in different physical locations. To evaluate
execution plans over the distributed data, Cloud Spanner uses execution based on:

local execution of subplans in servers that contain the data

orchestration and aggregation of multiple remote executions with aggressive distribution
pruning

Cloud Spanner uses the primitive operator distributed union
 (/spanner/docs/query-execution-operators#distributed-union), along with its variants distributed cross
apply (/spanner/docs/query-execution-operators#distributed-cross-apply) and distributed outer apply
 (/spanner/docs/query-execution-operators#distributed-outer-apply), to enable this model.

A SQL query in Cloud Spanner is �rst compiled into an execution plan, then it is sent to an initial root
server for execution. The root server is chosen so as to minimize the number of hops to reach the
data being queried. The root server then:

initiates remote execution of subplans (if necessary)

waits for results from the remote executions

handles any remaining local execution steps such as aggregating results

returns results for the query

https://cloud.google.com/spanner/docs/schema-and-data-model#database-splits
https://cloud.google.com/spanner/docs/query-execution-operators#distributed-union
https://cloud.google.com/spanner/docs/query-execution-operators#distributed-cross-apply
https://cloud.google.com/spanner/docs/query-execution-operators#distributed-outer-apply

1/25/2020 Query execution plans | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/query-execution-plans 5/14

Remote servers that receive a subplan act as a "root" server for their subplan, following the same
model as the topmost root server. The result is a tree of remote executions. Conceptually, query
execution �ows from top to bottom, and query results are returned from bottom to top.The following
diagram shows this pattern:

SplitsSplits

SQL query

Root
server

Remote
server

Remote
server

RowsRowsRowsRowsRows

The following examples illustrate this pattern in more detail.

An aggregate query implements GROUP BY queries.

For example, using this query:

These are the results:

1/25/2020 Query execution plans | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/query-execution-plans 6/14

Conceptually, this is the execution plan:

1/25/2020 Query execution plans | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/query-execution-plans 7/14

SELECT s.SingerId, COUNT(*) AS SongCount
FROM Songs AS s
WHERE s.SingerId < 100
GROUP BY s.SingerId

Distributed Union

Range:($SingerId < 100)

Serialize Result

SingerId: $SingerId_1
SongCount: $agg1

Aggregate

Key: $SingerId_1:=$SingerId
Agg: $agg1:= COUNT()

Local Distributed Union

Filter

Condition:($SingerId < 100)

Table scan

Table: Songs
$SingerId := SingerId

1/25/2020 Query execution plans | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/query-execution-plans 8/14

Cloud Spanner sends the execution plan to a root server that coordinates the query execution and
performs the remote distribution of subplans.

This execution plan starts with a distributed union
 (/spanner/docs/query-execution-operators#distributed-union), which distributes subplans to remote servers
whose splits satisfy SingerId < 100. Local distributed unions, shown later in the plan, represent
execution on the remote servers. Each local distributed union evaluates a subquery independently on
splits of the Songs table, subject to the �lter SingerId < 100. The local distributed unions return
results to an aggregate (/spanner/docs/query-execution-operators#aggregate) operator. The aggregate
operator performs the COUNT aggregation by SingerId and returns results to a serialize result
 (/spanner/docs/query-execution-operators#serialize_result) operator. The serialize result operator serializes
the results into rows that contain the song count by SingerId. The distributed union then unions all
results together and returns the query results.

You can learn more about aggregates at aggregate operator
 (/spanner/docs/query-execution-operators#aggregate).

Interleaved (/spanner/docs/schema-and-data-model#creating-interleaved-tables) tables are physically stored
with their rows of related tables co-located. A co-located join is a join between interleaved tables. Co-
located joins can offer performance bene�ts over joins that require indexes or back joins.

For example, using this query:

(This query assumes that Songs is interleaved in Albums.)

These are the results:

https://cloud.google.com/spanner/docs/query-execution-operators#distributed-union
https://cloud.google.com/spanner/docs/query-execution-operators#aggregate
https://cloud.google.com/spanner/docs/query-execution-operators#serialize_result
https://cloud.google.com/spanner/docs/query-execution-operators#aggregate
https://cloud.google.com/spanner/docs/schema-and-data-model#creating-interleaved-tables

1/25/2020 Query execution plans | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/query-execution-plans 9/14

This is the execution plan:

1/25/2020 Query execution plans | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/query-execution-plans 10/14

SELECT al.AlbumTitle, so.SongName
FROM Albums AS al, Songs AS so
WHERE al.SingerId = so.SingerId
AND al.AlbumId = so.AlbumId;

Distributed Union

Local Distributed Union

Serialize Result

Result.AlbumTitle: $AlbumTitle
Result.SongName: $SongName

Cross apply

Table scan

Table: Albums
$SingerId := SingerId
$AlbumId := AlbumId
$AlbumTitle := AlbumTitle

Index scan

Index: SongsBySingerAlbumSongNameDesc
Key Predicate:
: SingerId = $SingerId
: AlbumId = $AlbumId
$AlbumId_1 : AlbumId
SingerId_1 := SingerId
$SongName := SongName

Map

This execution plan starts with a distributed union
 (/spanner/docs/query-execution-operators#distributed-union), which distributes subplans to remote servers
that have splits of the table Albums. Because Songs is an interleaved table of Albums, each remote

https://cloud.google.com/spanner/docs/query-execution-operators#distributed-union

1/25/2020 Query execution plans | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/query-execution-plans 11/14

server is able to execute the entire subplan on each remote server without requiring a join to a
different server.

The subplans contain a cross apply (/spanner/docs/query-execution-operators#cross-apply). Each cross
apply performs a table scan (/spanner/docs/query-execution-operators#scan) on table Albums to retrieve
SingerId, AlbumId, and AlbumTitle. The cross apply then maps output from the table scan to output
from an index scan on index SongsBySingerAlbumSongNameDesc, subject to a �lter
 (/spanner/docs/query-execution-operators#�lter) of the SingerId in the index matching the SingerId
from the table scan output. Each cross apply sends its results to a serialize result
 (/spanner/docs/query-execution-operators#serialize_result) operator which serializes the AlbumTitle and
SongName data and returns results to the local distributed unions. The distributed union aggregates
results from the local distributed unions and returns them as the query result.

The example above used a join on two tables, one interleaved in the other. Execution plans are more
complex and less e�cient when two tables, or a table and an index, are not interleaved.

Consider an index created with the following command:

Use this index in this query:

These are the results:

This is the execution plan:

https://cloud.google.com/spanner/docs/query-execution-operators#cross-apply
https://cloud.google.com/spanner/docs/query-execution-operators#scan
https://cloud.google.com/spanner/docs/query-execution-operators#filter
https://cloud.google.com/spanner/docs/query-execution-operators#serialize_result

1/25/2020 Query execution plans | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/query-execution-plans 12/14

Back join query execution plan

The resulting execution plan is complicated because the index SongsBySongName does not contain
column Duration. To obtain the Duration value, Cloud Spanner needs to back join the indexed results
to the table Songs. This is a join but it is not co-located because the Songs table and the global index
SongsBySongName are not interleaved. The resulting execution plan is more complex than the co-
located join example because Cloud Spanner performs optimizations to speed up the execution if
data isn't co-located.

The top operator is a distributed cross apply
 (/spanner/docs/query-execution-operators#distributed-cross-apply). This input side of this operator are
batches of rows from the index SongsBySongName that satisfy the predicate STARTS_WITH(s.SongName,
"B"). The distributed cross apply then maps these batches to remote servers whose splits contain the
Duration data. The remote servers use a table scan to retrieve the Duration column. The table scan
uses the �lter Condition:($Songs_key_TrackId' = $batched_Songs_key_TrackId), which joins
TrackId from the Songs table to TrackId of the rows that were batched from the index
SongsBySongName.

The results are aggregated into the �nal query answer. In turn, the input side of the distributed cross
apply contains a distributed union/local distributed union pair to evaluate rows from the index that
satisfy the STARTS_WITH predicate.

Consider a slightly different query that doesn't select the s.Duration column:

This query is able to fully leverage the index as shown in this execution plan:

https://cloud.google.com/spanner/docs/query-execution-operators#distributed-cross-apply

1/25/2020 Query execution plans | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/query-execution-plans 13/14

SELECT s.SongName
FROM Songs@{force_index=SongsBySongName} AS s
WHERE STARTS_WITH(s.SingName, 'B')

Distributed Union

Split Predicate: STARTS_WITH($SongName, 'B')

Local Distributed Union

Serialize Result

Result.SongName:$SongName

Filter

Condition: STARTS_WITH($SongName, 'B')

Index scan

Index: SongsBySongName
$SongName:=SongName

The execution plan doesn't require a back join because all the columns requested by the query are
present in the index.

Learn about Query execution operators (/spanner/docs/query-execution-operators)

https://cloud.google.com/spanner/docs/query-execution-operators

1/25/2020 Query execution plans | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/query-execution-plans 14/14

