
1/25/2020 Schema and data model  |  Cloud Spanner  |  Google Cloud

https://cloud.google.com/spanner/docs/schema-and-data-model 1/15

A Cloud Spanner database can contain one or more tables. Tables look like relational database
tables in that they are structured with rows, columns, and values, and they contain primary keys. Data
in Cloud Spanner is strongly typed: you must de�ne a schema for each database and that schema
must specify the data types of each column of each table. Allowable data types include scalar and
array types, which are explained in more detail in Data types (/spanner/docs/data-types). You can also
de�ne one or more secondary indexes (/spanner/docs/secondary-indexes) on a table.

You can de�ne multiple tables in a database, and you can optionally de�ne parent-child
relationships between tables if you want Cloud Spanner to physically co-locate their rows for
e�cient retrieval. For example, if you have a Customers table and an Invoices table, and your
application frequently fetches all the invoices for a given customer, you can de�ne Invoices as a
child table of Customers. In doing so, you're declaring a data locality relationship between two
logically independent tables: you're telling Cloud Spanner to physically store one or more rows of
Invoices with one Customers row.

How do you tell Cloud Spanner which Invoices rows to store with which Customers rows? You do so
using the primary key of these tables. Every table must have a primary key, and that primary key can
be composed of zero or more columns of that table. If you declare a table to be a child of another
table, the primary key column(s) of the parent table must be the pre�x of the primary key of the child
table. This means if a parent table's primary key is composed of N columns, the primary key of each
of its child tables must also be composed of those same N columns, in the same order and starting
with the same column.

Cloud Spanner stores rows in sorted order by primary key values, with child rows inserted between
parent rows that share the same primary key pre�x. This insertion of child rows between parent rows
along the primary key dimension is called interleaving, and child tables are also called interleaved
tables. (See an illustration of interleaved rows in the Creating interleaved tables
 (#creating-interleaved-tables) below.)

https://cloud.google.com/spanner/docs/data-types
https://cloud.google.com/spanner/docs/secondary-indexes


1/25/2020 Schema and data model  |  Cloud Spanner  |  Google Cloud

https://cloud.google.com/spanner/docs/schema-and-data-model 2/15

In summary, Cloud Spanner can physically co-locate rows of related tables. The schema examples
below (#schema-examples) show what this physical layout looks like.

The primary key uniquely identi�es each row in a table. If you want to update or delete existing rows
in a table, then the table must have a primary key composed of one or more columns. (A table with
no primary key columns can have only one row.) Often your application already has a �eld that's a
natural �t for use as the primary key. For example, in the Customers table example above, there might
be an application-supplied CustomerId that serves well as the primary key. In other cases, you may
need to generate a primary key when inserting the row, like a unique INT64 value that you generate.

In all cases, you should be careful not to create hotspots with the choice of your primary key. For
example, if you insert records with a monotonically increasing integer as the key, you'll always insert
at the end of your key space. This is undesirable because Cloud Spanner divides data among servers
by key ranges, which means your inserts will be directed at a single server, creating a hotspot. There
are techniques that can spread the load across multiple servers and avoid hotspots:

Hash the key (/spanner/docs/schema-design#�x_hash_the_key) and store it in a column. Use the
hash column (or the hash column and the unique key columns together) as the primary key.

Swap the order (/spanner/docs/schema-design#�x_swap_key_order) of the columns in the primary
key.

Use a Universally Unique Identi�er (UUID) (/spanner/docs/schema-design#uuid_primary_key). Version
4 UUID  (https://tools.ietf.org/html/rfc4122) is recommended, because it uses random values in the
high-order bits. Don't use a UUID algorithm (such as version 1 UUID) that stores the timestamp
in the high order bits.

Bit-reverse (/spanner/docs/schema-design#bit_reverse_primary_key) sequential values.

You can de�ne hierarchies of parent-child relationships between tables up to seven layers deep,
which means you can co-locate rows of seven logically independent tables. If the size of the data in
your tables is small, your database can probably be handled by a single Cloud Spanner server. But
what happens when your related tables grow and start reaching the resource limits of an individual
server? Cloud Spanner is a distributed database, which means that as your database grows, Cloud
Spanner divides your data into chunks called "splits", where individual splits can move
independently from each other and get assigned to different servers, which can be in different
physical locations. A split is de�ned as a range of rows in a top-level (in other words, non-interleaved)
table, where the rows are ordered by primary key. The start and end keys of this range are called "split

https://cloud.google.com/spanner/docs/schema-design#fix_hash_the_key
https://cloud.google.com/spanner/docs/schema-design#fix_swap_key_order
https://cloud.google.com/spanner/docs/schema-design#uuid_primary_key
https://tools.ietf.org/html/rfc4122
https://cloud.google.com/spanner/docs/schema-design#bit_reverse_primary_key


1/25/2020 Schema and data model  |  Cloud Spanner  |  Google Cloud

https://cloud.google.com/spanner/docs/schema-and-data-model 3/15

boundaries". Cloud Spanner automatically adds and removes split boundaries, which changes the
number of splits in the database.

Cloud Spanner splits data based on load: it adds split boundaries automatically when it detects high
read or write load spread among many keys in a split. You have some control over how your data is
split because Cloud Spanner can only draw split boundaries between rows of tables that are at the
root of a hierarchy (that is, tables that are not interleaved in a parent table). Additionally, rows of an
interleaved table cannot be split from their corresponding row in their parent table because the rows
of the interleaved table are stored in sorted primary key order together with the row from their parent
table that shares the same primary key pre�x. (See an illustration of interleaved rows in Creating a
hierarchy of interleaved tables (#creating_a_hierarchy_of_interleaved_tables).) Thus, the parent-child table
relationships that you de�ne, along with the primary key values that you set for rows of related
tables, give you control over how data is split under the hood.

As an example of how Cloud Spanner performs load-based splitting to mitigate read hotspots,
suppose your database contains a table with 10 rows that are read more frequently than all of the
other rows in the table. As long as that table is at the root of the database hierarchy (in other words,
it's not an interleaved table), Cloud Spanner can add split boundaries between each of those 10 rows
so that they're each handled by a different server, rather than allowing all the reads of those rows to
consume the resources of a single server.

As a general rule, if you follow best practices for schema design (/spanner/docs/schema-design), Cloud
Spanner can mitigate hotspots on reads that target rows of a non-interleaved table such that the read
throughput should improve every few minutes until you saturate the resources in your instance or run
into cases where no new split boundaries can be added (because you have a split that covers just a
single row and its interleaved children).

The schema examples below show how to create Cloud Spanner tables with and without parent-child
relationships and illustrate the corresponding physical layouts of data.

Suppose you're creating a music application and you need a simple table that stores rows of singer
data:

https://cloud.google.com/spanner/docs/schema-design


1/25/2020 Schema and data model  |  Cloud Spanner  |  Google Cloud

https://cloud.google.com/spanner/docs/schema-and-data-model 4/15

 (/spanner/docs/images/singers_logical.svg)

Logical view of rows in a simple Singers table. The primary key column appears to the left of the
bolded line.

Note that the table contains one primary key column, SingerId, which appears to the left of the
bolded line, and that tables are organized by rows, columns, and values.

You can de�ne the table with a Cloud Spanner schema like this:

Note the following about the example schema:

Singers is a table at the root of the database hierarchy (because it's not de�ned as a child of
another table).

Primary key columns are usually annotated with NOT NULL (though you can omit this
annotation if you want to allow NULL values in key columns; see more in Key Columns
 (#notes_about_key_columns)).

Columns that are not included in the primary key are called non-key columns, and they can
have an optional NOT NULL annotation.

Columns that use the STRING or BYTES type must be de�ned with a length, which represents the
maximum number of Unicode characters that can be stored in the �eld. (More details in Scalar
Data Types (/spanner/docs/data-de�nition-language#scalars).)

https://cloud.google.com/spanner/docs/images/singers_logical.svg
https://cloud.google.com/spanner/docs/data-definition-language#scalars


1/25/2020 Schema and data model  |  Cloud Spanner  |  Google Cloud

https://cloud.google.com/spanner/docs/schema-and-data-model 5/15

What does the physical layout of the rows in the Singers table look like? The diagram below shows
rows of the Singers table stored by contiguous (that is, sorted order of) primary key (that is,
"Singers(1)", then "Singers(2)", and so on, where "Singers(1)" represents the row in the Singers table
keyed by 1).

 (/spanner/docs/images/singers_physical.svg)

Physical layout of rows in the Singers table, with an example split boundary that results in splits
handled by different servers.

The above diagram also illustrates possible split boundaries, which can occur between any rows of
Singers, because Singers is at the root of the database hierarchy. It also illustrates an example split
boundary between the rows keyed by Singers(3) and Singers(4), with the data from the resulting
splits assigned to different servers. This means that as this table grows, it's possible for rows of
Singers data to be stored in different locations.

Assume you now want to add some basic data about each singer's albums to the music application:

https://cloud.google.com/spanner/docs/images/singers_physical.svg


1/25/2020 Schema and data model  |  Cloud Spanner  |  Google Cloud

https://cloud.google.com/spanner/docs/schema-and-data-model 6/15

 (/spanner/docs/images/albums_logical.svg)

Logical view of rows in an Albums table. Primary key columns appear to the left of the bolded line

Note that the primary key of Albums is composed of two columns: SingerId and AlbumId, to associate
each album with its singer. The following example schema de�nes both the Albums and Singers
tables at the root of the database hierarchy, which makes them sibling tables:

The physical layout of the rows of Singers and Albums looks like the diagram, with rows of the
Albums table stored by contiguous primary key, then rows of Singers stored by contiguous primary
key:

https://cloud.google.com/spanner/docs/images/albums_logical.svg


1/25/2020 Schema and data model  |  Cloud Spanner  |  Google Cloud

https://cloud.google.com/spanner/docs/schema-and-data-model 7/15

 (/spanner/docs/images/singers_albums_noninterleaved_physical.svg)

Physical layout of rows of Singers and Albums tables, both at the root of the database hierarchy.

One important note about the schema above is that Cloud Spanner assumes no data locality
relationships between the Singers and Albums tables, because they are top-level tables. As the
database grows, Cloud Spanner can add split boundaries between any of the rows shown above.
This means the rows of the Albums table could end up in a different split from the rows of the
Singers table, and the two splits could move independently from each other.

Depending on your application's needs, it might be �ne to allow Albums data to be located on different
splits from Singers data. However, if your application frequently needs to retrieve information about
all the albums for a given singer, then you should create Albums as a child table of Singers, which co-
locates rows from the two tables along the primary key dimension. The next example explains this in
more detail.

As you're designing your music application, suppose you realize that the app needs to frequently
access rows from both Singers and Albums tables for a given primary key (e.g. each time you access
the row Singers(1), you also need to access the rows Albums(1, 1) and Albums(1, 2)). In other
words, Singers and Albums need to have a strong data locality relationship.

You can declare this data locality relationship by creating Albums as a child, or "interleaved", table of
Singers. As mentioned in Primary keys (#primary_keys), an interleaved table is a table that you declare
to be a child of another table because you want the rows of the child table to be physically stored
together with the associated parent row. As mentioned above, the pre�x of the primary key of a child
table must be the primary key of the parent table.

https://cloud.google.com/spanner/docs/images/singers_albums_noninterleaved_physical.svg


1/25/2020 Schema and data model  |  Cloud Spanner  |  Google Cloud

https://cloud.google.com/spanner/docs/schema-and-data-model 8/15

The bolded line in the schema below shows how to create Albums as an interleaved table of Singers.

Notes about this schema:

SingerId, which is the pre�x of the primary key of the child table Albums, is also the primary key
of its parent table Singers. This is not required if Singers and Albums are at the same level of
the hierarchy, but is required in this schema because Albums is declared to be a child table of
Singers.

The ON DELETE CASCADE (/spanner/docs/data-de�nition-language#create_table) annotation signi�es
that when a row from the parent table is deleted, its child rows in this table will automatically be
deleted as well (that is, all rows that start with the same primary key). If a child table does not
have this annotation, or the annotation is ON DELETE NO ACTION, then you must delete the child
rows before you can delete the parent row.

Interleaved rows are ordered �rst by rows of the parent table, then by contiguous rows of the
child table that share the parent's primary key, i.e. "Singers(1)", then "Albums(1, 1)", then
"Albums(1, 2)", and so on.

The data locality relationship of each singer and their album data would be preserved if this
database splits, because splits can only be inserted between rows of the Singers table.

The parent row must exist before you can insert child rows.

https://cloud.google.com/spanner/docs/data-definition-language#create_table


1/25/2020 Schema and data model  |  Cloud Spanner  |  Google Cloud

https://cloud.google.com/spanner/docs/schema-and-data-model 9/15

 (/spanner/docs/images/singers_albums_interleaved_physical.svg)

Physical layout of rows of Singers and its child table Albums.

The parent-child relationship between Singers and Albums can be extended to more descendant
tables. For example, you could create an interleaved table called Songs as a child of Albums to store
the track list of each album:

 (/spanner/docs/images/songs_logical.svg)

Logical view of rows in an Songs table. Primary key columns appear to the left of the bolded line

Songs must have a primary key that's composed of all the primary keys of the tables above it in the
hierarchy, that is, SingerId and AlbumId.

https://cloud.google.com/spanner/docs/images/singers_albums_interleaved_physical.svg
https://cloud.google.com/spanner/docs/images/songs_logical.svg


1/25/2020 Schema and data model  |  Cloud Spanner  |  Google Cloud

https://cloud.google.com/spanner/docs/schema-and-data-model 10/15

The physical view of interleaved rows shows that the data locality relationship is preserved between
a singer and their albums and songs data:



1/25/2020 Schema and data model  |  Cloud Spanner  |  Google Cloud

https://cloud.google.com/spanner/docs/schema-and-data-model 11/15

 (/spanner/docs/images/singers_albums_songs_interleaved_physical.svg)

Physical layout of rows of Singers, Albums, and Songs tables, which form a hierarchy of interleaved
tables.

In summary, a parent table along with all of its child and descendant tables forms a hierarchy of
tables in the schema. Although each table in the hierarchy is logically independent, physically
interleaving them this way can improve performance, effectively pre-joining the tables and allowing
you to access related rows together while minimizing disk accesses.

If possible, join data in interleaved tables by primary key. Each interleaved row is guaranteed to be
physically stored in the same split as its parent row. Therefore, Cloud Spanner can perform joins by
primary key locally, minimizing disk access and network tra�c. In the following example, Singers
and Albums are joined on the primary key, SingerId:

Interleaving tables in Cloud Spanner is not required, but is recommended for tables with strong data
locality relationships. Avoid interleaving tables if there is a chance that the size of a single row and
its descendents will become larger than a few GB (/spanner/docs/schema-design#limit_row_size).

https://cloud.google.com/spanner/docs/images/singers_albums_songs_interleaved_physical.svg
https://cloud.google.com/spanner/docs/schema-design#limit_row_size


1/25/2020 Schema and data model  |  Cloud Spanner  |  Google Cloud

https://cloud.google.com/spanner/docs/schema-and-data-model 12/15

The keys of a table can't change; you can't add a key column to an existing table or remove a key
column from an existing table.

Primary key columns can be de�ned to store NULLs. If you would like to store NULLs in a primary key
column, omit the NOT NULL clause for that column in the schema.

Here's an example of omitting the NOT NULL clause on the primary key column SingerId. Note that
because SingerId is the primary key, there can be at most only one row in the Singers table that
stores NULL in that column.

The nullable property of the primary key column must match between the parent and the child table
declarations. In this example, Albums.SingerId INT64 NOT NULL is not allowed. The key declaration
must omit the NOT NULL clause because Singers.SingerId omits it.



1/25/2020 Schema and data model  |  Cloud Spanner  |  Google Cloud

https://cloud.google.com/spanner/docs/schema-and-data-model 13/15

These cannot be of type ARRAY:

A table's key columns.

An index's key columns.

You might want to provide multitenancy if you are storing data that belongs to different customers.
For example, a music service might want to store each individual record label's separately.

The classic way to design for multitenancy is to create a separate database for each customer. In
this example, each database has its own Singers table:

Database 1: Ackworth Records

SingerId FirstName LastName

1 Marc Richards

2 Catalina Smith

Database 2: Cama Records

SingerId FirstName LastName

3 Marc Richards

4 Gabriel Wright

Database 3: Eagan Records

SingerId FirstName LastName

1 Benjamin Martinez

2 Hannah Harris



1/25/2020 Schema and data model  |  Cloud Spanner  |  Google Cloud

https://cloud.google.com/spanner/docs/schema-and-data-model 14/15

The recommended way to design for multitenancy in Cloud Spanner is to use a different primary key
value for each customer. You include a CustomerId key, or similar key, column in your tables. If you
make CustomerId the �rst key column, then the data for each customer has good locality. Cloud
Spanner automatically splits your data across your nodes based on size and load patterns. In this
example, there is a single Singers table for all customers:

Cloud Spanner multitenancy database

CustomerId SingerId FirstName LastName

1 1 Marc Richards

1 2 Catalina Smith

2 3 Marc Richards

2 4 Gabriel Wright

3 1 Benjamin Martinez

3 2 Hannah Harris

If you must have separate databases for each tenant, there are constraints to be aware of:

There are limits (/spanner/quotas) on the number of databases per instance and tables per
database. Depending on the number of customers, it might not be possible to have separate
databases or tables.

Adding new tables and non-interleaved indexes can take a long time
 (/spanner/docs/schema-updates#schema_update_performance). You might not be able to get the
performance you want if your schema design depends on adding new tables and indexes.

If you want to create separate databases, you might have more success if you distribute your tables
across databases in such a way that each database has a low number of schema changes per week
 (/spanner/docs/schema-updates#week-window).

If you create separate tables and indexes for each customer of your application, do not put all of the
tables and indexes in the same database. Instead, split them across many databases, to mitigate the
performance issues (/spanner/docs/schema-updates#large-updates) with creating a large number of
indexes. There are also limits on the number of tables and indexes per database.

https://cloud.google.com/spanner/quotas
https://cloud.google.com/spanner/docs/schema-updates#schema_update_performance
https://cloud.google.com/spanner/docs/schema-updates#week-window
https://cloud.google.com/spanner/docs/schema-updates#large-updates


1/25/2020 Schema and data model  |  Cloud Spanner  |  Google Cloud

https://cloud.google.com/spanner/docs/schema-and-data-model 15/15


