
1/25/2020 Secondary indexes | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/secondary-indexes/ 1/28

In a Cloud Spanner database, Cloud Spanner automatically creates an index for each table's primary
key column. For example, you don't need to do anything to index the primary key column of Singers,
because it's automatically indexed for you.

You can also create secondary indexes for other columns. Adding a secondary index on a column
makes it more e�cient to look up data in that column. For example, if you need to quickly look up a
set of SingerId values for a given range of LastName values, you should create a secondary index on
LastName, so Cloud Spanner does not need to scan the entire table.

Cloud Spanner stores the following data in each secondary index:

All key columns from the base table

All columns that are included in the index

All columns speci�ed in the optional STORING clause (#storing-clause) of the index de�nition

Over time, Cloud Spanner analyzes your tables to ensure that your secondary indexes are used for the
appropriate queries.

The most e�cient time to add a secondary index is when you create the table. To create a table and
its indexes at the same time, send the DDL statements for the new table and the new indexes in a
single request to Cloud Spanner.

In Cloud Spanner, you can also add a new secondary index to an existing table while the database
continues to serve tra�c. Like any other schema changes in Cloud Spanner, adding an index to an
existing database does not require taking the database o�ine and does not lock entire columns or
tables.

Whenever a new index is added to an existing table, Cloud Spanner automatically back�lls, or
populates, the index to re�ect an up-to-date view of the data being indexed. Cloud Spanner manages
this back�ll process for you, and it uses additional resources during the index back�ll.

Index creation can take from several minutes to many hours. Because index creation is a schema
update, it is bound by the same performance constraints (/spanner/docs/schema-updates#performance)

as any other schema update. The time needed to create a secondary index depends on several
factors:

https://cloud.google.com/spanner/docs/schema-updates#performance

1/25/2020 Secondary indexes | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/secondary-indexes/ 2/28

The size of the data set

The number of nodes in the instance

The load on the instance

Be aware that using the commit timestamp (/spanner/docs/commit-timestamp) column as the �rst part
of the secondary index can create hotspots (/spanner/docs/schema-design#primary-key-prevent-hotspots)

and reduce write performance.

If you are adding many secondary indexes to a database, follow the guidance for large schema updates

nner/docs/schema-updates#large-updates) when you create the indexes.

Use the CREATE INDEX (/spanner/docs/data-de�nition-language#create_index) statement to de�ne a
secondary index in your schema. Here are some examples:

To index all Singers in the database by their �rst and last name:

To create an index of all Songs in the database by the value of SongName:

To index only the songs for a particular singer, interleave the index in the table Singers:

To index only the songs on a particular album:

To index by descending order of SongName:

https://cloud.google.com/spanner/docs/commit-timestamp
https://cloud.google.com/spanner/docs/schema-design#primary-key-prevent-hotspots
https://cloud.google.com/spanner/docs/schema-updates#large-updates
https://cloud.google.com/spanner/docs/data-definition-language#create_index

1/25/2020 Secondary indexes | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/secondary-indexes/ 3/28

Note that the DESC annotation above applies only to SongName. To index by descending order of other
index keys, annotate them with DESC as well: SingerId DESC, AlbumId DESC.

You can use the Cloud SDK to cancel index creation. To retrieve a list of schema-update operations
for a Cloud Spanner database, use the gcloud spanner operations list
 (/sdk/gcloud/reference/spanner/operations/list) command, and include the --filter option:

Find the OPERATION_ID for the operation you want to cancel, then use the gcloud spanner operations
cancel (/sdk/gcloud/reference/spanner/operations/cancel) command to cancel it:

To view information about existing indexes in a database, you can use the Google Cloud Console or
the gcloud command-line tool:

https://cloud.google.com/sdk/gcloud/reference/spanner/operations/list
https://cloud.google.com/sdk/gcloud/reference/spanner/operations/cancel

1/25/2020 Secondary indexes | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/secondary-indexes/ 4/28

The following sections explain how to specify an index in a SQL statement and with the read
interface for Cloud Spanner. The examples in these sections assume that you added a
MarketingBudget column to the Albums table and created an index called AlbumsByAlbumTitle:

1/25/2020 Secondary indexes | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/secondary-indexes/ 5/28

When you use SQL to query a Cloud Spanner table, Cloud Spanner automatically uses any indexes
that are likely to make the query more e�cient. As a result, you typically don't need to specify an
index for SQL queries.

In a few cases, though, Cloud Spanner might choose an index that causes query latency to increase.
If you've followed the troubleshooting steps for performance regressions
 (/spanner/docs/troubleshooting-performance-regressions) and con�rmed that it makes sense to try a
different index for the query, you can specify the index as part of your query.

To specify an index in a SQL statement, use FORCE_INDEX (/spanner/docs/query-syntax#table-hints) to
provide an index directive. Index directives use the following syntax:

You can also use an index directive to tell Cloud Spanner to scan the base table instead of using an
index:

The following example shows a SQL query that speci�es an index:

An index directive might force Cloud Spanner's query processor to read additional columns that are
required by the query but not stored in the index. The query processor retrieves these columns by

https://cloud.google.com/spanner/docs/troubleshooting-performance-regressions
https://cloud.google.com/spanner/docs/query-syntax#table-hints

1/25/2020 Secondary indexes | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/secondary-indexes/ 6/28

joining the index and the base table. To avoid this extra join, use a STORING clause (#storing-clause) to
store the additional columns in the index.

For instance, in the example shown above, the MarketingBudget column is not stored in the index, but
the SQL query selects this column. As a result, Cloud Spanner must look up the MarketingBudget
column in the base table, then join it with data from the index, to return the query results.

Cloud Spanner raises an error if the index directive has any of the following issues:

The index does not exist.

The index is on a different base table.

The query is missing a required NULL �ltering expression (#null-indexing-disable) for a
NULL_FILTERED (#null-indexing) index.

The following examples show how to write and execute queries that fetch the values of AlbumId,
AlbumTitle, and MarketingBudget using the index AlbumsByAlbumTitle:

1/25/2020 Secondary indexes | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/secondary-indexes/ 7/28

1/25/2020 Secondary indexes | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/secondary-indexes/ 8/28

1/25/2020 Secondary indexes | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/secondary-indexes/ 9/28

1/25/2020 Secondary indexes | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/secondary-indexes/ 10/28

1/25/2020 Secondary indexes | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/secondary-indexes/ 11/28

1/25/2020 Secondary indexes | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/secondary-indexes/ 12/28

1/25/2020 Secondary indexes | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/secondary-indexes/ 13/28

When you use the read interface to Cloud Spanner, and you want Cloud Spanner to use an index, you
must specify the index. The read interface does not select the index automatically.

In addition, your index must contain all of the data that appears in the query results, excluding
columns that are part of the primary key. This restriction exists because the read interface does not
support joins between the index and the base table. If you need to include other columns in the query
results, you have a few options:

Use a STORING clause (#storing-clause) to store the additional columns in the index.

Query without including the additional columns, then use the primary keys to send another
query that reads the additional columns.

Cloud Spanner returns values from the index in ascending sort order by index key. To retrieve values
in descending order, complete these steps:

Annotate the index key with DESC. For example:

The DESC annotation applies to a single index key. If the index includes more than one key, and
you want the query results to appear in descending order based on all keys, include a DESC
annotation for each key.

If the read speci�es a key range, ensure that the key range is also in descending order. In other
words, the value of the start key must be greater than the value of the end key.

1/25/2020 Secondary indexes | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/secondary-indexes/ 14/28

The following example shows how to retrieve the values of AlbumId and AlbumTitle using the index
AlbumsByAlbumTitle:

1/25/2020 Secondary indexes | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/secondary-indexes/ 15/28

1/25/2020 Secondary indexes | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/secondary-indexes/ 16/28

1/25/2020 Secondary indexes | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/secondary-indexes/ 17/28

1/25/2020 Secondary indexes | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/secondary-indexes/ 18/28

Optionally, you can use the STORING clause to store a copy of a column in the index. This type of
index provides advantages for queries and read calls using the index, at the cost of using extra
storage:

SQL queries that use the index and select columns stored in the STORING clause do not require
an extra join to the base table.

Read calls that use the index can read columns stored in the STORING clause.

1/25/2020 Secondary indexes | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/secondary-indexes/ 19/28

For example, suppose you created an alternate version of AlbumsByAlbumTitle that stores a copy of
the MarketingBudget column in the index (note the STORING clause in bold):

With the old AlbumsByAlbumTitle index, Cloud Spanner must join the index with the base table, then
retrieve the column from the base table. With the new AlbumsByAlbumTitle2 index, Cloud Spanner
reads the column directly from the index, which is more e�cient.

If you use the read interface instead of SQL, the new AlbumsByAlbumTitle2 index also lets you read
the MarketingBudget column directly:

1/25/2020 Secondary indexes | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/secondary-indexes/ 20/28

1/25/2020 Secondary indexes | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/secondary-indexes/ 21/28

1/25/2020 Secondary indexes | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/secondary-indexes/ 22/28

1/25/2020 Secondary indexes | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/secondary-indexes/ 23/28

1/25/2020 Secondary indexes | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/secondary-indexes/ 24/28

By default, Cloud Spanner indexes NULL values. For example, recall the de�nition of the index
SingersByFirstLastName on the table Singers:

All rows of Singers are indexed even if either FirstName or LastName, or both, are NULL.

1/25/2020 Secondary indexes | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/secondary-indexes/ 25/28

 (/spanner/docs/images/indexing_nulls.svg)

When NULL values are indexed, you can perform e�cient SQL queries and reads over data that
includes NULL values. For example, use this SQL query statement to �nd all Singers with a NULL
FirstName:

Cloud Spanner sorts NULL as the smallest value for any given type. For a column in ascending (ASC)
order, NULL values sort �rst. For a column in descending (DESC) order, NULL values sort last.

To disable the indexing of nulls, add the NULL_FILTERED keyword to the index de�nition.
NULL_FILTERED indexes are particularly useful for indexing sparse columns, where most rows contain
a NULL value. In these cases, the NULL_FILTERED index can be considerably smaller and more e�cient
to maintain than a normal index that includes NULL values.

Here's an alternate de�nition of SingersByFirstLastName that does not index NULL values:

https://cloud.google.com/spanner/docs/images/indexing_nulls.svg

1/25/2020 Secondary indexes | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/secondary-indexes/ 26/28

The NULL_FILTERED keyword applies to all index key columns. You cannot specify NULL �ltering on a
per-column basis.

Making an index NULL_FILTERED prevents Cloud Spanner from using it for some queries. For example,
Cloud Spanner does not use the index for this query, because the index omits any Singers rows for
which LastName is NULL; as a result, using the index would prevent the query from returning the correct
rows:

To enable Cloud Spanner to use the index, you must rewrite the query so it excludes the rows that are
also excluded from the index:

Indexes can be declared UNIQUE. UNIQUE indexes add a constraint to the data being indexed that
prohibits duplicate entries for a given index key. This constraint is enforced by Cloud Spanner at
transaction commit time. Speci�cally, any transaction that would cause multiple index entries for the
same key to exist will fail to commit.

If a table contains non-UNIQUE data in it to begin with, attempting to create a UNIQUE index on it will
fail.

A UNIQUE NULL_FILTERED index does not enforce index key uniqueness when at least one of the
index's key parts is NULL.

For example, suppose that you created the following table and index:

1/25/2020 Secondary indexes | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/secondary-indexes/ 27/28

The following two rows in ExampleTable have the same values for the secondary index keys Key1,
Key2 and Col1:

Because Key2 is NULL and the index is NULL_FILTERED, the rows will not be present in the index
ExampleIndex. Because they are not inserted into the index, the index will not reject them for violating
uniqueness on (Key1, Key2, Col1).

If you want the index to enforce the uniqueness of values of the tuple (Key1, Key2, Col1), then you
must annotate Key2 with NOT NULL in the table de�nition or create the index without NULL_FILTERED.

If a key column contains NULL values, don't create a UNIQUE NULL_FILTERED index that contains only that key colum

d, add another column to the index that does not contain NULL values.

Use the DROP INDEX (/spanner/docs/data-de�nition-language#drop-index) statement to drop a secondary
index from your schema.

To drop the index named SingersByFirstLastName:

Learn about SQL best practices for Cloud Spanner (/spanner/docs/sql-best-practices).

https://cloud.google.com/spanner/docs/data-definition-language#drop-index
https://cloud.google.com/spanner/docs/sql-best-practices

1/25/2020 Secondary indexes | Cloud Spanner | Google Cloud

https://cloud.google.com/spanner/docs/secondary-indexes/ 28/28

Understand query execution plans for Cloud Spanner (/spanner/docs/query-execution-plans).

Find out how to troubleshoot performance regressions in SQL queries
 (/spanner/docs/troubleshooting-performance-regressions).

https://cloud.google.com/spanner/docs/query-execution-plans
https://cloud.google.com/spanner/docs/troubleshooting-performance-regressions

