
1/25/2020 Connecting to Cloud SQL from Cloud Functions | Cloud SQL for MySQL | Google Cloud

https://cloud.google.com/sql/docs/mysql/connect-functions 1/5

MySQL | PostgreSQL (https://cloud.google.com/sql/docs/postgres/connect-functions) | SQL Server

Cloud SQL

Documentation

MySQL Guides

Beta

This feature is in a pre-release state and might change or have limited support. For more information, see the

product launch stages (https://cloud.google.com/products/#product-launch-stages).

This page contains information and examples for connecting to a Cloud SQL instance from a
service running in Cloud Functions.

Cloud SQL is a fully-managed database service that makes it easy to set up, maintain, manage,
and administer your relational PostgreSQL and MySQL databases in the cloud.

Cloud Functions (https://cloud.google.com/functions/docs/concepts/overview) is a lightweight
compute solution for developers to create single-purpose, stand-alone functions that respond to
Cloud events without the need to manage a server or runtime environment.

Se�ing up a Cloud SQL instance

1. Create a Cloud SQL for MySQL instance
 (https://cloud.google.com/sql/docs/mysql/create-instance#create-2nd-gen).

Note: These instructions require your Cloud SQL instance to have a public IP address. If you want to

use a private IP address, see Con�guring Serverless VPC Access

 (https://cloud.google.com/vpc/docs/con�gure-serverless-vpc-access) and connect directly using the

private IP.

2. Find the INSTANCE_CONNECTION_NAME for the instance on the Instance details page. It
uses the format PROJECT_ID:REGION:INSTANCE_ID, and is used to identify the Cloud

 (https://cloud.google.com/sql/)

 (https://cloud.google.com/sql/docs/)

 (https://cloud.google.com/sql/docs/mysql/)

Connecting to Cloud SQL from Cloud
Functions

https://cloud.google.com/sql/docs/postgres/connect-functions
https://cloud.google.com/sql/
https://cloud.google.com/sql/docs/
https://cloud.google.com/sql/docs/mysql/
https://cloud.google.com/sql/docs/mysql/
https://cloud.google.com/products/#product-launch-stages
https://cloud.google.com/functions/docs/concepts/overview
https://cloud.google.com/sql/docs/mysql/create-instance#create-2nd-gen
https://cloud.google.com/vpc/docs/configure-serverless-vpc-access

1/25/2020 Connecting to Cloud SQL from Cloud Functions | Cloud SQL for MySQL | Google Cloud

https://cloud.google.com/sql/docs/mysql/connect-functions 2/5

SQL instance you are connecting to.

3. Enable the Cloud SQL Admin API, if you haven't already done so:

ENABLE THE API (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/FLOWS/ENABLEAPI?APIID=SQLADMIN&

Con�guring Cloud Functions

Cloud Functions does not require any special con�guration beyond making sure the service
account used has the correct permissions.

Cloud Functions uses a service account to authorize your connections to Cloud SQL. This
service account must have the correct IAM permissions to successfully connect. Unless
otherwise con�gured, the default service account is in the format service-
YOUR_PROJECT_NUMBER@gcf-admin-robot.iam.gserviceaccount.com.

When connecting resources in two different projects, make sure that both projects have enabled
the correct IAM roles and have given the service account the correct permissions.

Ensure that the service account for your service has one of the following IAM roles
 (https://cloud.google.com/iam/docs/understanding-roles#cloud-sql-roles):

Cloud SQL Client (preferred)

Cloud SQL Editor

Cloud SQL Admin

Or, you can manually assign the following IAM permissions
 (https://cloud.google.com/storage/docs/access-control/using-iam-permissions):

cloudsql.instances.connect

cloudsql.instances.get

For detailed instructions on adding IAM roles to a service account, see Granting Roles to Service
Accounts (https://cloud.google.com/iam/docs/granting-roles-to-service-accounts).

Connecting to Cloud SQL

https://console.cloud.google.com/flows/enableapi?apiid=sqladmin&redirect=https://console.cloud.google.com
https://cloud.google.com/iam/docs/understanding-roles#cloud-sql-roles
https://cloud.google.com/storage/docs/access-control/using-iam-permissions
https://cloud.google.com/iam/docs/granting-roles-to-service-accounts

1/25/2020 Connecting to Cloud SQL from Cloud Functions | Cloud SQL for MySQL | Google Cloud

https://cloud.google.com/sql/docs/mysql/connect-functions 3/5

cloud-sql/mysql/sqlalchemy/main.py
 (https://github.com/GoogleCloudPlatform/python-docs-samples/blob/master/cloud-
sql/mysql/sqlalchemy/main.py)

OUDPLATFORM/PYTHON-DOCS-SAMPLES/BLOB/MASTER/CLOUD-SQL/MYSQL/SQLALCHEMY/MAIN.PY)

Once correctly con�gured, you can connect your service to your Cloud SQL instance using the
Unix domain socket located at /cloudsql/INSTANCE_CONNECTION_NAME. These connections
are automatically encrypted without any additional con�guration.

Warning: Linux based operating systems have a max socket path length of 107 characters. If the total length

of the path exceeds this length, you will not be able to connect with a socket from Cloud Functions.

Note: By default, Cloud Functions does not support connecting to the Cloud SQL instance using TCP. Your

code should not try to access the instance using an IP address (such as 127.0.0.1 or 172.17.0.1) unless

you have con�gured Serverless VPC Access

 (https://cloud.google.com/vpc/docs/con�gure-serverless-vpc-access).

PYTHON NODE.JS

The SQLAlchemy engine will help manage interactions, including automatically
managing a pool of connections to your database
db = sqlalchemy.create_engine(
 # Equivalent URL:
 # mysql+pymysql://<db_user>:<db_pass>@/<db_name>?unix_socket=/cloudsql/<cloud_
 sqlalchemy.engine.url.URL(
 drivername='mysql+pymysql',
 username=db_user,
 password=db_pass,
 database=db_name,
 query={
 'unix_socket': '/cloudsql/{}'.format(cloud_sql_connection_name)
 }
),
 # ... Specify additional properties here.
 # ...
)

https://github.com/GoogleCloudPlatform/python-docs-samples/blob/master/cloud-sql/mysql/sqlalchemy/main.py
https://github.com/GoogleCloudPlatform/python-docs-samples/blob/master/cloud-sql/mysql/sqlalchemy/main.py
https://cloud.google.com/vpc/docs/configure-serverless-vpc-access

1/25/2020 Connecting to Cloud SQL from Cloud Functions | Cloud SQL for MySQL | Google Cloud

https://cloud.google.com/sql/docs/mysql/connect-functions 4/5

To see this snippet in the context of a web application, view the source code on GitHub
 (https://github.com/GoogleCloudPlatform/python-docs-samples/blob/master/cloud-
sql/mysql/sqlalchemy/)
.

Best Practices & Other Information

You can use the Cloud SQL proxy (https://cloud.google.com/sql/docs/mysql/sql-proxy) when testing
your application locally. See the quickstart for using the proxy for local testing
 (https://cloud.google.com/sql/docs/mysql/quickstart-proxy-test) for detailed instructions.

Connection Pools

Connections to underlying databases may be dropped, either by the database server itself, or by
the infrastructure underlying Cloud Functions. To mitigate this, we recommend that you use a
client library that supports connection pools that automatically reconnect broken client
connections.

Additionally, we recommend using a globally scoped connection pool as this improves the
likelihood that your function reuses the same connection for subsequent invocations of the
function, and closes the connection naturally when the instance is evicted (auto-scaled down).

For more detailed examples on how to use connection pools, see Managing database
connections (https://cloud.google.com/sql/docs/mysql/manage-connections).

Connection Limits

Cloud SQL imposes a maximum limit on concurrent connections, and these limits may vary
depending on the database engine chosen (see Cloud SQL Quotas and Limits
 (https://cloud.google.com/sql/docs/quotas#�xed-limits)).

When using a connection pool, it is important to set the maximum connections to 1. This may
seem counter-intuitive, however, Cloud Functions limits concurrent executions to 1 per instance.
This means you never have a situation where two requests are being processed by a single
function instance at the same time. This means in most situations only a single database
connection is needed.

https://github.com/GoogleCloudPlatform/python-docs-samples/blob/master/cloud-sql/mysql/sqlalchemy/
https://cloud.google.com/sql/docs/mysql/sql-proxy
https://cloud.google.com/sql/docs/mysql/quickstart-proxy-test
https://cloud.google.com/sql/docs/mysql/manage-connections
https://cloud.google.com/sql/docs/quotas#fixed-limits

1/25/2020 Connecting to Cloud SQL from Cloud Functions | Cloud SQL for MySQL | Google Cloud

https://cloud.google.com/sql/docs/mysql/connect-functions 5/5

Where possible, you should take care to only initialize a connection pool for functions that need
to use it. If a deployed function initializes a connection pool it doesn't need, it could create
unused connections that count towards your quota. For more details on dealing with global
variables in Cloud Functions, see Tips & Tricks
 (https://cloud.google.com/functions/docs/bestpractices/tips#use_global_variables_to_reuse_objects_in_fu
ture_invocations)

.

For more detailed examples on how to limit the number of connections, see Managing
database connections (https://cloud.google.com/sql/docs/mysql/manage-connections#count).

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License
 (https://creativecommons.org/licenses/by/4.0/), and code samples are licensed under the Apache 2.0 License
 (https://www.apache.org/licenses/LICENSE-2.0). For details, see our Site Policies
 (https://developers.google.com/terms/site-policies). Java is a registered trademark of Oracle and/or its a�liates.

Last updated December 5, 2019.

https://cloud.google.com/functions/docs/bestpractices/tips#use_global_variables_to_reuse_objects_in_future_invocations
https://cloud.google.com/sql/docs/mysql/manage-connections#count
https://creativecommons.org/licenses/by/4.0/
https://www.apache.org/licenses/LICENSE-2.0
https://developers.google.com/terms/site-policies

