
1/23/2020 Managing database connections | Cloud SQL for MySQL | Google Cloud

https://cloud.google.com/sql/docs/mysql/manage-connections 1/6

cloud-sql/mysql/sqlalchemy/main.py
 (https://github.com/GoogleCloudPlatform/python-docs-samples/blob/master/cloud-
sql/mysql/sqlalchemy/main.py)

OUDPLATFORM/PYTHON-DOCS-SAMPLES/BLOB/MASTER/CLOUD-SQL/MYSQL/SQLALCHEMY/MAIN.PY)

MySQL | PostgreSQL (https://cloud.google.com/sql/docs/postgres/manage-connections) | SQL
Server (https://cloud.google.com/sql/docs/sqlserver/manage-connections)

Cloud SQL

Documentation

MySQL Guides

This page provides best practices and language-speci�c code samples to help you create
applications that use Cloud SQL database connections effectively.

These samples are excerpts from a complete App Engine application available to you on
GitHub. Learn more (#app-links).

Connection pools

A connection pool is a cache of database connections that are shared and reused to improve
connection latency and performance. When your application needs a database connection, it
borrows one from its pool temporarily; when the application is �nished with the connection, it
returns the connection to the pool, where it can be reused the next time the application needs a
database connection.

 (https://cloud.google.com/sql/)

 (https://cloud.google.com/sql/docs/)

 (https://cloud.google.com/sql/docs/mysql/)

Managing database connections

PYTHON JAVA NODE.JS C#

The SQLAlchemy engine will help manage interactions, including automatically
managing a pool of connections to your database
db = sqlalchemy.create_engine(
 # Equivalent URL:
 # mysql+pymysql://<db_user>:<db_pass>@/<db_name>?unix_socket=/cloudsql/<cloud_
 sqlalchemy.engine.url.URL(
 drivername="mysql+pymysql",
 username=db_user,

 

https://github.com/GoogleCloudPlatform/python-docs-samples/blob/master/cloud-sql/mysql/sqlalchemy/main.py
https://github.com/GoogleCloudPlatform/python-docs-samples/blob/master/cloud-sql/mysql/sqlalchemy/main.py
https://cloud.google.com/sql/docs/postgres/manage-connections
https://cloud.google.com/sql/docs/sqlserver/manage-connections
https://cloud.google.com/sql/
https://cloud.google.com/sql/docs/
https://cloud.google.com/sql/docs/mysql/
https://cloud.google.com/sql/docs/mysql/

1/23/2020 Managing database connections | Cloud SQL for MySQL | Google Cloud

https://cloud.google.com/sql/docs/mysql/manage-connections 2/6

cloud-sql/mysql/sqlalchemy/main.py
 (https://github.com/GoogleCloudPlatform/python-docs-samples/blob/master/cloud-
sql/mysql/sqlalchemy/main.py)

OUDPLATFORM/PYTHON-DOCS-SAMPLES/BLOB/MASTER/CLOUD-SQL/MYSQL/SQLALCHEMY/MAIN.PY)

Opening and closing connections

When you use a connection pool, you must open and close connections properly, so that your
connections are always returned to the pool when you are done with them. Unreturned or
"leaked" connections are not reused, which wastes resources and can cause performance
bottlenecks for your application.

 password=db_pass,
 database=db_name,
 query={"unix_socket": "/cloudsql/{}".format(cloud_sql_connection_name)},
),
 # ... Specify additional properties here.
 # ...
)

PYTHON JAVA NODE.JS C#

Preparing a statement before hand can help protect against injections.
stmt = sqlalchemy.text(
 "INSERT INTO votes (time_cast, candidate)" " VALUES (:time_cast, :candidate)"
)
try:
 # Using a with statement ensures that the connection is always released
 # back into the pool at the end of statement (even if an error occurs)
 with db.connect() as conn:
 conn.execute(stmt, time_cast=time_cast, candidate=team)
except Exception as e:
 # If something goes wrong, handle the error in this section. This might
 # involve retrying or adjusting parameters depending on the situation.
 # ...

 

https://github.com/GoogleCloudPlatform/python-docs-samples/blob/master/cloud-sql/mysql/sqlalchemy/main.py
https://github.com/GoogleCloudPlatform/python-docs-samples/blob/master/cloud-sql/mysql/sqlalchemy/main.py

1/23/2020 Managing database connections | Cloud SQL for MySQL | Google Cloud

https://cloud.google.com/sql/docs/mysql/manage-connections 3/6

cloud-sql/mysql/sqlalchemy/main.py
 (https://github.com/GoogleCloudPlatform/python-docs-samples/blob/master/cloud-
sql/mysql/sqlalchemy/main.py)

OUDPLATFORM/PYTHON-DOCS-SAMPLES/BLOB/MASTER/CLOUD-SQL/MYSQL/SQLALCHEMY/MAIN.PY)

cloud-sql/mysql/sqlalchemy/main.py
 (https://github.com/GoogleCloudPlatform/python-docs-samples/blob/master/cloud-
sql/mysql/sqlalchemy/main.py)

OUDPLATFORM/PYTHON-DOCS-SAMPLES/BLOB/MASTER/CLOUD-SQL/MYSQL/SQLALCHEMY/MAIN.PY)

Connection count

Every database connection uses client and server-side resources. In addition, Cloud SQL
imposes overall connection limits that cannot be exceeded. Creating and using fewer
connections reduces overhead and helps you stay under the connection limit.

Exponential backo�

If your application attempts to connect to the database and does not succeed, the database
could be temporarily unavailable. In this case, sending too many simultaneous connection
requests might waste additional database resources and increase the time needed to recover.
Using exponential backoff prevents your application from sending an unhealthy number of
connection requests when it can't connect to the database.

PYTHON JAVA NODE.JS C#

Pool size is the maximum number of permanent connections to keep.
pool_size=5,
Temporarily exceeds the set pool_size if no connections are available.
max_overflow=2,
The total number of concurrent connections for your application will be
a total of pool_size and max_overflow.

 

PYTHON JAVA NODE.JS C#

https://github.com/GoogleCloudPlatform/python-docs-samples/blob/master/cloud-sql/mysql/sqlalchemy/main.py
https://github.com/GoogleCloudPlatform/python-docs-samples/blob/master/cloud-sql/mysql/sqlalchemy/main.py
https://github.com/GoogleCloudPlatform/python-docs-samples/blob/master/cloud-sql/mysql/sqlalchemy/main.py
https://github.com/GoogleCloudPlatform/python-docs-samples/blob/master/cloud-sql/mysql/sqlalchemy/main.py

1/23/2020 Managing database connections | Cloud SQL for MySQL | Google Cloud

https://cloud.google.com/sql/docs/mysql/manage-connections 4/6

cloud-sql/mysql/sqlalchemy/main.py
 (https://github.com/GoogleCloudPlatform/python-docs-samples/blob/master/cloud-
sql/mysql/sqlalchemy/main.py)

OUDPLATFORM/PYTHON-DOCS-SAMPLES/BLOB/MASTER/CLOUD-SQL/MYSQL/SQLALCHEMY/MAIN.PY)

Connection timeout

There are many reasons why a connection attempt might not succeed. Network communication
is never guaranteed, and the database might be temporarily unable to respond. Your application
should handle broken or unsuccessful connections gracefully.

Killing a connection

A mysql user with the PROCESS privilege in Cloud SQL is able to execute a KILL statement on a
connection of any other mysql user (except Cloud SQL administrative users).

You can list the connections to an instance using the mysql client and executing the SHOW
PROCESSLIST command. Use the Id to kill the connection. For example:

Connection duration

SQLAlchemy automatically uses delays between failed connection attempts,
but provides no arguments for configuration.

 

PYTHON JAVA NODE.JS C#

'pool_timeout' is the maximum number of seconds to wait when retrieving a
new connection from the pool. After the specified amount of time, an
exception will be thrown.
pool_timeout=30, # 30 seconds

 

mysql> SHOW PROCESSLIST;
mysql> KILL 6;

 

https://github.com/GoogleCloudPlatform/python-docs-samples/blob/master/cloud-sql/mysql/sqlalchemy/main.py
https://github.com/GoogleCloudPlatform/python-docs-samples/blob/master/cloud-sql/mysql/sqlalchemy/main.py

1/23/2020 Managing database connections | Cloud SQL for MySQL | Google Cloud

https://cloud.google.com/sql/docs/mysql/manage-connections 5/6

cloud-sql/mysql/sqlalchemy/main.py
 (https://github.com/GoogleCloudPlatform/python-docs-samples/blob/master/cloud-
sql/mysql/sqlalchemy/main.py)

OUDPLATFORM/PYTHON-DOCS-SAMPLES/BLOB/MASTER/CLOUD-SQL/MYSQL/SQLALCHEMY/MAIN.PY)

Limiting a connection's lifetime can help prevent abandoned connections from accumulating.
You can use the connection pool to limit your connection lifetimes.

View the complete application

To see the complete application, click the link below.

View the complete application
 (https://github.com/GoogleCloudPlatform/python-docs-samples/blob/master/cloud-
sql/mysql/sqlalchemy/README.md)
for the Python programming language.

What's next

Learn more about Private IP (https://cloud.google.com/sql/docs/mysql/private-ip).

Learn about quotas and limits (https://cloud.google.com/sql/docs/mysql/quotas) for Cloud
SQL and App Engine.

Learn about best practices (https://cloud.google.com/sql/docs/mysql/best-practices) for
working with Cloud SQL.

PYTHON JAVA NODE.JS C#

'pool_recycle' is the maximum number of seconds a connection can persist.
Connections that live longer than the specified amount of time will be
reestablished
pool_recycle=1800, # 30 minutes

 

PYTHON JAVA NODE.JS C#

https://github.com/GoogleCloudPlatform/python-docs-samples/blob/master/cloud-sql/mysql/sqlalchemy/main.py
https://github.com/GoogleCloudPlatform/python-docs-samples/blob/master/cloud-sql/mysql/sqlalchemy/main.py
https://github.com/GoogleCloudPlatform/python-docs-samples/blob/master/cloud-sql/mysql/sqlalchemy/README.md
https://cloud.google.com/sql/docs/mysql/private-ip
https://cloud.google.com/sql/docs/mysql/quotas
https://cloud.google.com/sql/docs/mysql/best-practices

1/23/2020 Managing database connections | Cloud SQL for MySQL | Google Cloud

https://cloud.google.com/sql/docs/mysql/manage-connections 6/6

Learn more about connecting from an external application
 (https://cloud.google.com/sql/docs/mysql/connect-external-app).

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License
 (https://creativecommons.org/licenses/by/4.0/), and code samples are licensed under the Apache 2.0 License
 (https://www.apache.org/licenses/LICENSE-2.0). For details, see our Site Policies
 (https://developers.google.com/terms/site-policies). Java is a registered trademark of Oracle and/or its a�liates.

Last updated January 8, 2020.

https://cloud.google.com/sql/docs/mysql/connect-external-app
https://creativecommons.org/licenses/by/4.0/
https://www.apache.org/licenses/LICENSE-2.0
https://developers.google.com/terms/site-policies

