
1/25/2020 Signed URLs | Cloud Storage | Google Cloud

https://cloud.google.com/storage/docs/access-control/signed-urls 1/5

This page provides an overview of signed URLs, which you use to give time-limited resource access
to anyone in possession of the URL, regardless of whether they have a Google account. To learn how
to create a signed URL, see V4 Signing Process with Cloud Storage Tools
 (/storage/docs/access-control/signing-urls-with-helpers) and V4 Signing Process with Your Own Program
 (/storage/docs/access-control/signing-urls-manually). To learn about other ways of controlling access to
buckets and objects, see Overview of Access Control (/storage/docs/access-control/index).

tant: Signed URLs can only be used to access resources in Cloud Storage through XML API endpoints

age/docs/request-endpoints).

A signed URL is a URL that provides limited permission and time to make a request. Signed URLs
contain authentication information in their query string, allowing users without credentials to perform
speci�c actions on a resource. When you generate a signed URL, you specify a user or service
account which must have su�cient permission to make the request that the signed URL will make.
After you generate a signed URL, anyone who possesses it can use the signed URL to perform
speci�ed actions, such as reading an object, within a speci�ed period of time.

In some scenarios, you might not want to require your users to have a Google account in order to
access Cloud Storage, but you still want to control access using your application-speci�c logic. The
typical way to address this use case is to provide a signed URL to a user, which gives the user read,
write, or delete access to that resource for a limited time. You specify an expiration time when you
create the signed URL. Anyone who knows the URL can access the resource until the expiration time
for the URL is reached or the key used to sign the URL is rotated.

Cloud Storage supports several methods for generating a signed URL:

V4 signing with service account authentication : This signing mechanism is described
below.

BETA

https://cloud.google.com/storage/docs/access-control/signing-urls-with-helpers
https://cloud.google.com/storage/docs/access-control/signing-urls-manually
https://cloud.google.com/storage/docs/access-control/index
https://cloud.google.com/storage/docs/request-endpoints

1/25/2020 Signed URLs | Cloud Storage | Google Cloud

https://cloud.google.com/storage/docs/access-control/signed-urls 2/5

V2 signing with service account authentication: For more information about this signing
mechanism, go here (/storage/docs/access-control/signed-urls-v2).

Signing with HMAC authentication: If you're an Amazon Simple Storage Service (Amazon S3)
user, you can use your existing work�ows to generate signed URLs for Cloud Storage. Simply
specify Cloud Storage resources, point to the host storage.googleapis.com, and use Google
HMAC credentials in the process of generating the signed URL.

The following is an example of a signed URL that was created following the V4 signing process with
service account authentication:

This signed URL provided access to read the object cat.jpeg in the bucket example-bucket. The
query parameters that make this a signed URL are:

X-Goog-Algorithm: The algorithm used to sign the URL.

X-Goog-Credential: Information about the credentials used to create the signed URL.

X-Goog-Date: The date and time the signed URL became usable, in the ISO 8601
 (https://en.wikipedia.org/wiki/ISO_8601) basic format YYYYMMDD'T'HHMMSS'Z'.

X-Goog-Expires: The length of time the signed URL remained valid, measured in seconds from
the value in X-Goog-Date. In this example the Signed URL expires in 15 minutes. The longest
expiration value is 604800 seconds (7days).

X-Goog-SignedHeaders: Headers that had to be included as part of any request that used the
signed URL.

https://cloud.google.com/storage/docs/access-control/signed-urls-v2
https://en.wikipedia.org/wiki/ISO_8601

1/25/2020 Signed URLs | Cloud Storage | Google Cloud

https://cloud.google.com/storage/docs/access-control/signed-urls 3/5

X-Goog-Signature: The authentication string that allowed requests using this signed URL to
access cat.jpeg.

When using signed URLs with resumable uploads (/storage/docs/resumable-uploads) to upload objects
to your bucket, you only need to use the signed URL in the initial POST request. No data is uploaded in
the POST request; instead, the request returns a session URI which is used in subsequent PUT requests
to upload data. Since the session URI is, in effect, an authentication token, the PUT requests do not
need to use the original signed URL. This behavior allows the POST request to be made by the server,
avoiding the need for clients to have to deal with signed URLs themselves.

tant: Be sure to transmit the session URI over HTTPS when giving it to a client.

Resumable uploads are pinned in the region they start in. For example, if you create a resumable
upload URL in the US and give it to a client in Asia, the upload still goes through the US. Performing a
resumable upload in a region where it wasn't initiated can cause slow uploads. To avoid this, have
the initial POST request constructed and signed by the server, but then give the signed URL to the client
so that the upload is initiated from their location. Once initiated, the client can use the resulting
session URI normally to make PUT requests that do not need to be signed.

When working with signed URLs, keep in mind the following:

Signed URLs can generally be made for any XML API request
 (/storage/docs/access-control/signing-urls-manually); however, the Node.js Cloud Storage Client
Libraries currently can only make signed URLs for individual objects. For example, it cannot be
used to make signed URLs for listing objects in a bucket.

When specifying credentials, it is recommended that you identify your service account by using
its email address; however, use of the service account ID is also supported.

https://cloud.google.com/storage/docs/resumable-uploads
https://cloud.google.com/storage/docs/access-control/signing-urls-manually

1/25/2020 Signed URLs | Cloud Storage | Google Cloud

https://cloud.google.com/storage/docs/access-control/signed-urls 4/5

Signed URLs use canonical requests (/storage/docs/authentication/canonical-requests) as part of the
information encoded in their X-Goog-Signature query string parameter. When you make a signed URL
with Cloud Storage tools (/storage/docs/access-control/signing-urls-with-helpers), the required canonical
request is created and incorporated automatically. However, when you make a signed URL with your
own program (/storage/docs/access-control/signing-urls-manually), you need to de�ne the canonical
request yourself.

The credential scope appears in both the string-to-sign and the X-Goog-Credential query string
parameter. It has the following structure:

[DATE]: Date formatted as YYYYMMDD, which must match the day used in the string-to-sign.

[LOCATION]: The region where the resource resides or will be created. For Cloud Storage
resources, the value of [LOCATION] is arbitrary: the [LOCATION] parameter exists to maintain
compatibility with Amazon Simple Storage Service (Amazon S3).

storage: The service name.

goog4_request: The type of signed URL.

Example: 20181102/us/storage/goog4_request

When generating a signed URL using a program (/storage/docs/access-control/signing-urls-manually), one
option for signing the string is to use tools provided by Google Cloud.

Signing within a App Engine application uses the App Engine Identity service, which utilizes App
Engine service account credentials. For example, using the Python App Identity API
 (/appengine/docs/python/appidentity/), you can:

https://cloud.google.com/storage/docs/authentication/canonical-requests
https://cloud.google.com/storage/docs/access-control/signing-urls-with-helpers
https://cloud.google.com/storage/docs/access-control/signing-urls-manually
https://cloud.google.com/storage/docs/access-control/signing-urls-manually
https://cloud.google.com/appengine/docs/python/appidentity/

1/25/2020 Signed URLs | Cloud Storage | Google Cloud

https://cloud.google.com/storage/docs/access-control/signed-urls 5/5

Use google.appengine.api.app_identity.sign_blob() to sign the bytes from your constructed
string, providing the Signature you need when assembling the signed URL.

Use google.appengine.api.app_identity.get_service_account_name() to retrieve a service
account name, which is the GoogleAccessId you need when assembling the signed URL.

App Engine also provides support in other languages:

App Identity API for Java (/appengine/docs/java/appidentity/).

App Identity API for PHP Overview (/appengine/docs/php/appidentity/).

App Identity Go Functions (/appengine/docs/go/appidentity/).

The App Identity service rotates the private keys when it signs blobs. Signed URLs generated from the
App Identity service are usable for at least one hour, but may stop working prior to the set expiration
time. Given this, signed URLs generated from the App Identity service are best used for short-lived
access to resources.

Signing can be accomplished using the IAM signBlob
 (/iam/credentials/reference/rest/v1/projects.serviceAccounts/signBlob) method.

Create a signed URL with Cloud Storage tools
 (/storage/docs/access-control/signing-urls-with-helpers) such as gsutil.

Create a signed URL with your own program (/storage/docs/access-control/signing-urls-manually).

Learn more about Canonical requests (/storage/docs/authentication/canonical-requests).

https://cloud.google.com/appengine/docs/java/appidentity/
https://cloud.google.com/appengine/docs/php/appidentity/
https://cloud.google.com/appengine/docs/go/appidentity/
https://cloud.google.com/iam/credentials/reference/rest/v1/projects.serviceAccounts/signBlob
https://cloud.google.com/storage/docs/access-control/signing-urls-with-helpers
https://cloud.google.com/storage/docs/access-control/signing-urls-manually
https://cloud.google.com/storage/docs/authentication/canonical-requests

