
1/25/2020 Best practices for Cloud Storage  |  Google Cloud

https://cloud.google.com/storage/docs/best-practices 1/8

This page contains a summary of best practices drawn from other pages in the Cloud Storage
documentation. You can use the best practices listed here as a quick reference of what to keep in
mind when building an application that uses Cloud Storage. Follow these best practices when
launching a commercial application.

If you are just starting out with Cloud Storage, this page may not be the best place to start, because it
does not teach you the basics of how to use Cloud Storage. If you are a new user, we suggest that
you start with Getting Started: Using the Cloud Console (/storage/docs/gettingstarted-console) or Getting
Started: Using the gsutil Tool (/storage/docs/gettingstarted-gsutil).

The bucket namespace is global and publicly visible. Every bucket name must be unique across
the entire Cloud Storage namespace. For more information, see Bucket and Object Naming
Guidelines (/storage/docs/bucket-naming).

If you need a lot of buckets, use GUIDs or an equivalent for bucket names, put retry logic in your
code to handle name collisions, and keep a list to cross-reference your buckets. Another option
is to use domain-named buckets (/storage/docs/domain-name-veri�cation) and manage the bucket
names as sub-domains.

Don't use user IDs, email addresses, project names, project numbers, or any personally
identi�able information (PII) in bucket names because anyone can probe for the existence of a
bucket. Similarly, be very careful with putting PII in your object names, because object names
appear in URLs for the object.

Bucket names should conform to standard DNS naming conventions, because a bucket name
can appear in a DNS record as part of a CNAME redirect. For details on bucket name
requirements, see Bucket Name Requirements (/storage/docs/bucket-naming#requirements).

Forward slashes in objects have no special meaning to Cloud Storage, as there is no native
directory support. Because of this, deeply nested directory- like structures using slash delimiters
are possible, but won't have the performance of a native �lesystem listing deeply nested sub-
directories.

https://cloud.google.com/storage/docs/gettingstarted-console
https://cloud.google.com/storage/docs/gettingstarted-gsutil
https://cloud.google.com/storage/docs/bucket-naming
https://cloud.google.com/storage/docs/domain-name-verification
https://cloud.google.com/storage/docs/bucket-naming#requirements


1/25/2020 Best practices for Cloud Storage  |  Google Cloud

https://cloud.google.com/storage/docs/best-practices 2/8

Avoid using sequential �lenames such as timestamp-based �lenames if you are uploading
many �les in parallel. Because �les with sequential names are stored consecutively, they are
likely to hit the same backend server, meaning that throughput will be constrained. In order to
achieve optimal throughput, you can add the hash of the sequence number as part of the
�lename to make it non-sequential. For more information, see Request Rate and Access
Distribution Guidelines (https://cloud.google.com/storage/docs/request-rate).

Perform a back-of-the-envelope estimation of the amount of tra�c that will be sent to Cloud
Storage. Speci�cally, think about:

Operations per second. How many operations per second do you expect, for both buckets
and objects, and for create, update, and delete operations.

Bandwidth. How much data will be sent, over what time frame?

Cache control. Specifying the Cache-Control metadata
 (/storage/docs/metadata#cache-control) on objects will bene�t read latency on hot or
frequently accessed objects. See Viewing and Editing Metadata
 (/storage/docs/viewing-editing-metadata#edit) for instructions for setting object metadata,
such as Cache-Control.

Design your application to minimize spikes in tra�c. If there are clients of your application
doing updates, spread them out throughout the day.

While Cloud Storage has no upper bound on the request rate, for the best performance when
scaling to high request rates, follow the Request Rate and Access Distribution Guidelines
 (/storage/docs/request-rate).

Be aware that there are rate limits (/storage/quotas) for certain operations and design your
application accordingly.

If you get an error:

Retry with exponential backoff (/storage/docs/exponential-backoff) to avoid problems due to
large tra�c bursts.

Retry using a new connection and possibly re-resolve the domain name. This is to avoid
"server stickiness" i.e. you want your retry to go through a different path to avoid hitting
the same unhealthy component that the initial request hit.

https://cloud.google.com/storage/docs/request-rate
https://cloud.google.com/storage/docs/metadata#cache-control
https://cloud.google.com/storage/docs/viewing-editing-metadata#edit
https://cloud.google.com/storage/docs/request-rate
https://cloud.google.com/storage/quotas
https://cloud.google.com/storage/docs/exponential-backoff


1/25/2020 Best practices for Cloud Storage  |  Google Cloud

https://cloud.google.com/storage/docs/best-practices 3/8

If your application is latency sensitive, use hedged requests. Hedged requests allow you to retry
faster and cut down on tail latency. They do this while not reducing your request deadline,
which could cause requests to time out prematurely. For more information, see
https://www2.cs.duke.edu/courses/cps296.4/fall13/838-CloudPapers/dean_longtail.pdf

Understand the performance level customers will expect from your application. This
information will help you choose a storage option and region when creating new buckets.

Data that will be served at a high rate with high availability should use the Standard Storage
 (/storage/docs/storage-classes#standard) class. This class provides the best availability with the
trade-off of a higher price.

Data that will be infrequently accessed and can tolerate slightly lower availability can be stored
using the Nearline Storage (/storage/docs/storage-classes#nearline) or Coldline Storage
 (/storage/docs/storage-classes#coldline) class.

Store your data in a region closest to your application's users. For instance, for EU data you
might choose an EU bucket, and for US data you might choose a US bucket. For more
information, see Bucket Locations (/storage/docs/locations).

Keep compliance requirements in mind when choosing a location for user data. Are there legal
requirements around the locations that your users will be providing data?

The �rst and foremost precaution is: Never share your credentials. Each user should have
distinct credentials.

When you print out HTTP protocol details, your authentication credentials, such as OAuth 2.0
tokens, are visible in the headers. If you need to post protocol details to a message board or
need to supply HTTP protocol details for troubleshooting, make sure that you sanitize or revoke
any credentials that appear as part of the output.

Always use TLS (HTTPS) to transport your data when you can. This ensures that your
credentials as well as your data are protected as you transport data over the network. For
example, to access the Cloud Storage API, you should use https://storage.googleapis.com.

Make sure that you use an HTTPS library that validates server certi�cates. A lack of server
certi�cate validation makes your application vulnerable to man-in-the-middle attacks or other

https://cloud.google.com/storage/docs/storage-classes#standard
https://cloud.google.com/storage/docs/storage-classes#nearline
https://cloud.google.com/storage/docs/storage-classes#coldline
https://cloud.google.com/storage/docs/locations


1/25/2020 Best practices for Cloud Storage  |  Google Cloud

https://cloud.google.com/storage/docs/best-practices 4/8

attacks. Be aware that HTTPS libraries shipped with certain commonly used implementation
languages do not, by default, verify server certi�cates. For example, Python before version 3.2
has no built-in or complete support for server certi�cate validation, and you need to use third-
party wrapper libraries to ensure your application validates server certi�cates.

When applications no longer need access to your data, you should revoke their authentication
credentials. For Google services and APIs, you can do this by logging into your Google Account
Permissions (https://myaccount.google.com/permissions) and clicking on the unneeded
applications, then clicking Remove Access.

Make sure that you securely store your credentials. This can be done differently depending on
your environment and where you store your credentials. For example, if you store your
credentials in a con�guration �le, make sure that you set appropriate permissions on that �le to
prevent unwanted access. If you are using Google App Engine, consider using
StorageByKeyName to store your credentials.

Cloud Storage requests refer to buckets and objects by their names. As a result, even though
ACLs will prevent unauthorized third parties from operating on buckets or objects, a third party
can attempt requests with bucket or object names and determine their existence by observing
the error responses. It can then be possible for information in bucket or object names to be
leaked. If you are concerned about the privacy of your bucket or object names, you should take
appropriate precautions, such as:

Choosing bucket and object names that are di�cult to guess. For example, a bucket
named mybucket-gtbytul3 is random enough that unauthorized third parties cannot
feasibly guess it or enumerate other bucket names from it.

Avoiding use of sensitive information as part of bucket or object names. For example,
instead of naming your bucket mysecretproject-prodbucket, name it
somemeaninglesscodename-prod. In some applications, you may want to keep sensitive
metadata in custom Cloud Storage headers (/storage/docs/metadata#custom-metadata)

such as x-goog-meta, rather than encoding the metadata in object names.

Use groups in preference to explicitly listing large numbers of users. Not only does it scale
better, it also provides a very e�cient way to update the access control for a large number of
objects all at once. Lastly, it’s cheaper as you don’t need to make a request per-object to change
the ACLs.

Before adding objects to a bucket, check that the default object ACLs
 (/storage/docs/access-control/lists#default) are set to your requirements �rst. This could save you
a lot of time updating ACLs for individual objects.

Bucket and object ACLs are independent of each other, which means that the ACLs on a bucket
do not affect the ACLs on objects inside that bucket. It is possible for a user without

https://myaccount.google.com/permissions
https://cloud.google.com/storage/docs/metadata#custom-metadata
https://cloud.google.com/storage/docs/access-control/lists#default


1/25/2020 Best practices for Cloud Storage  |  Google Cloud

https://cloud.google.com/storage/docs/best-practices 5/8

permissions for a bucket to have permissions for an object inside the bucket. For example, you
can create a bucket such that only GroupA is granted permission to list the objects in the
bucket, but then upload an object into that bucket that allows GroupB READ access to the object.
GroupB will be able to read the object, but will not be able to view the contents of the bucket or
perform bucket-related tasks.

The Cloud Storage access control system includes the ability to specify that objects are
publicly readable. Make sure you intend for any objects you write with this permission to be
public. Once "published", data on the Internet can be copied to many places, so it's effectively
impossible to regain read control over an object written with this permission.

The Cloud Storage access control system includes the ability to specify that buckets are
publicly writable. While con�guring a bucket this way can be convenient for various purposes,
we recommend against using this permission - it can be abused for distributing illegal content,
viruses, and other malware, and the bucket owner is legally and �nancially responsible for the
content stored in their buckets.

If you need to make content available securely to users who don't have Google accounts we
recommend you use signed URLs (/storage/docs/access-control/signed-urls). For example, with
signed URLs you can provide a link to an object and your application's customers do not need
to authenticate with Cloud Storage to access the object. When you create a signed URL you
control the type (read, write, delete) and duration of access.

If you use gsutil (https://cloud.google.com/storage/docs/gsutil), see these additional
recommendations
 (/storage/docs/gsutil/addlhelp/SecurityandPrivacyConsiderations#recommended-user-precautions).

If you use XMLHttpRequest (XHR) callbacks to get progress updates, do not close and re-open
the connection if you detect that progress has stalled. Doing so creates a bad positive feedback
loop during times of network congestion. When the network is congested, XHR callbacks can
get backlogged behind the acknowledgement (ACK/NACK) activity from the upload stream, and
closing and reopening the connection when this happens uses more network capacity at
exactly the time when you can least afford it.

For upload tra�c, we recommend setting reasonably long timeouts. For a good end-user
experience, you can set a client-side timer that updates the client status window with a
message (e.g., "network congestion") when your application hasn't received an XHR callback for
a long time. Don't just close the connection and try again when this happens.

https://cloud.google.com/storage/docs/access-control/signed-urls
https://cloud.google.com/storage/docs/gsutil
https://cloud.google.com/storage/docs/gsutil/addlhelp/SecurityandPrivacyConsiderations#recommended-user-precautions


1/25/2020 Best practices for Cloud Storage  |  Google Cloud

https://cloud.google.com/storage/docs/best-practices 6/8

If you use Compute Engine instances with processes that POST to Cloud Storage to initiate a
resumable upload (/storage/docs/resumable-uploads), then you should use Compute Engine
instances in the same locations as your Cloud Storage buckets. You can then use a geo IP
service to pick the Compute Engine region to which you route customer requests, which helps
keep tra�c localized to a geo-region.

For resumable uploads, the resumable session should stay in the region in which it was
created. Doing so reduces cross-region tra�c that arises when reading and writing the session
state, improving resumable upload performance.

Avoid breaking a transfer into smaller chunks if possible and instead upload the entire content
in a single chunk. Avoiding chunking removes �xed latency costs and improves throughput, as
well as reducing QPS against Cloud Storage.

Situations where you should consider uploading in chunks include when your source data is
being generated dynamically, your clients have request size limitations (which is true for many
browsers), or your clients are unable to stream bytes in a single request without �rst loading the
full request into memory. If your clients receive an error, they can query the server for the
commit offset and resume uploading (/storage/docs/performing-resumable-uploads#resume-upload)

remaining bytes from that offset.

If possible, avoid uploading content that has both content-encoding: gzip and a content-
type that is compressed, as this may lead to unexpected behavior
 (/storage/docs/transcoding#gzip-gzip).

If you are concerned that your application software or users might erroneously delete or overwrite
objects at some point, Cloud Storage has features that help you protect your data:

A retention policy (/storage/docs/bucket-lock) that speci�es a retention period can be placed on a
bucket (/storage/docs/using-bucket-lock#set-policy). An object in the bucket cannot be deleted or
overwritten until it reaches the speci�ed age.

An object hold (/storage/docs/bucket-lock#object-holds) can be placed on individual objects
 (/storage/docs/holding-objects#place-object-hold) to prevent anyone from deleting or overwriting
the object until the hold is removed.

Object Versioning (/storage/docs/object-versioning) can be enabled on a bucket in order to retain
older versions of objects when they are deleted or overwritten. Object Versioning increases
storage costs, but this can be partially mitigated by con�guring Object Lifecycle Management
 (/storage/docs/lifecycle) to delete older object versions.

https://cloud.google.com/storage/docs/resumable-uploads
https://cloud.google.com/storage/docs/performing-resumable-uploads#resume-upload
https://cloud.google.com/storage/docs/transcoding#gzip-gzip
https://cloud.google.com/storage/docs/bucket-lock
https://cloud.google.com/storage/docs/using-bucket-lock#set-policy
https://cloud.google.com/storage/docs/bucket-lock#object-holds
https://cloud.google.com/storage/docs/holding-objects#place-object-hold
https://cloud.google.com/storage/docs/object-versioning
https://cloud.google.com/storage/docs/lifecycle


1/25/2020 Best practices for Cloud Storage  |  Google Cloud

https://cloud.google.com/storage/docs/best-practices 7/8

on: If Object Lifecycle Management (/storage/docs/lifecycle) causes millions of objects in your bucket to be changed 

d, object listing performance is severely degraded while the lifecycle actions are occurring. Reach out to Google Cloud

rt (/support/) or your Account Manager before setting up such a policy.

If you just deleted a lot of objects from your bucket, object listing could temporarily become very
slow. This is because the deleted records are not purged from the underlying storage system
immediately, thus object listing needs to skip over the deleted records when �nding the objects to
return.

Eventually the deleted records are removed from the underlying storage system, and object listing
performance becomes normal again. This typically takes a few hours, but in some cases may take a
few days.

You should design your workload to avoid listing an object range with a lot of recent deletions. For
example, if you are trying to delete objects from a bucket by repeatedly listing objects then deleting
them, you should use the page token returned by the object listing response to issue the next listing
request, instead of restarting the listing from the beginning for each request. When you restart your
listing from the beginning, each request needs to skip over all of the objects that were just deleted,
causing the object listing to become slower. If you have deleted a lot of objects under a certain pre�x,
then try to avoid listing objects under that pre�x right after the deletions.

The Cross-Origin Resource Sharing (CORS) (/storage/docs/cross-origin) topic describes how to allow
scripts hosted on other websites to access static resources stored in a Cloud Storage bucket. The
converse scenario is when you allow scripts hosted in Cloud Storage to access static resources
hosted on a website external to Cloud Storage. In the latter scenario, the website is serving CORS
headers so that content on storage.googleapis.com is allowed access. It is recommended that you
dedicate a speci�c bucket for this data access. For example, it is better to have the website serve the
CORS header Access-Control-Allow-Origin: https://mybucket.storage.googleapis.com instead
of Access-Control-Allow-Origin: https://storage.googleapis.com. This approach prevents your
site from inadvertently over-exposing static resources to all of storage.googleapis.com.

https://cloud.google.com/storage/docs/lifecycle
https://cloud.google.com/support/
https://cloud.google.com/storage/docs/cross-origin


1/25/2020 Best practices for Cloud Storage  |  Google Cloud

https://cloud.google.com/storage/docs/best-practices 8/8


