
1/25/2020 Configuring cross-origin resource sharing (CORS)  |  Cloud Storage

https://cloud.google.com/storage/docs/configuring-cors/ 1/7

Cross Origin Resource Sharing (CORS) is a mechanism for allowing interactions between
resources from different origins, something that is normally prohibited in order to prevent
malicious behavior. Use this topic to learn how to con�gure CORS on a Cloud Storage bucket.

For more information about Cloud Storage CORS support, see Cross-Origin Resource Sharing
(CORS) (/storage/docs/cross-origin).

You set CORS con�guration on a bucket by specifying information, such as HTTP methods and
originating domains, that identify the types of requests it will accept. You can use the gsutil
command-line tool (/storage/docs/gsutil), the XML API (/storage/docs/xml-api/overview), the JSON
API (/storage/docs/json_api/), or the client libraries for Cloud Storage
 (/storage/docs/reference/libraries) to set CORS con�guration on a bucket.

The following example illustrates how to con�gure CORS on the bucket named example-
bucket. The example sets the CORS con�guration as follows:

Allow requests that originate from example.appspot.com.

Allow requests that use the GET, HEAD, or DELETE HTTP methods.

Allow the Content-Type response header to be shared across origins.

For pre�ighted requests, allow the browser to make requests for 3600 seconds (1 hour)
before it must repeat the pre�ight request.

https://cloud.google.com/storage/docs/cross-origin
https://cloud.google.com/storage/docs/gsutil
https://cloud.google.com/storage/docs/xml-api/overview
https://cloud.google.com/storage/docs/json_api/
https://cloud.google.com/storage/docs/reference/libraries


1/25/2020 Configuring cross-origin resource sharing (CORS)  |  Cloud Storage

https://cloud.google.com/storage/docs/configuring-cors/ 2/7



1/25/2020 Configuring cross-origin resource sharing (CORS)  |  Cloud Storage

https://cloud.google.com/storage/docs/configuring-cors/ 3/7



1/25/2020 Configuring cross-origin resource sharing (CORS)  |  Cloud Storage

https://cloud.google.com/storage/docs/configuring-cors/ 4/7



1/25/2020 Configuring cross-origin resource sharing (CORS)  |  Cloud Storage

https://cloud.google.com/storage/docs/configuring-cors/ 5/7

If you run into unexpected behavior when accessing Cloud Storage buckets from a different
origin, try the following steps:

1. Use gsutil cors get on the target bucket to get its CORS con�guration. If you have
multiple CORS con�guration entries, make sure that as you go through the following
steps that the request values map to values in the same single CORS con�guration entry.

2. Review a request and response using the tool of your choice. In a Chrome browser, you
can use the standard developer tools to see this information:

a. Click the Chrome menu



1/25/2020 Configuring cross-origin resource sharing (CORS)  |  Cloud Storage

https://cloud.google.com/storage/docs/configuring-cors/ 6/7

on the browser toolbar.

b. Select More Tools > Developer Tools.

c. Click the Network tab.

d. From your application or command line, send the request.

e. In the pane displaying the network activity, locate the request.

f. In the Name column, click the name corresponding to the request.

g. Click the Headers tab to see the response headers, or the Response tab to see the
content of the response.

If you're not seeing a request and response, it is possible that your browser has cached an
earlier failed pre�ight request attempt. Clearing your browser's cache should also clear the
pre�ight cache. If it doesn't, set the MaxAgeSec value in your CORS con�guration to a lower
value (the default value is 1800 (30 minutes) if not speci�ed), wait for however long the
old MaxAgeSec was, then try the request again. This performs a new pre�ight request,
which fetches the new CORS con�guration and purges the cache entries. Once you have
debugged your problem, raise MaxAgeSec back to a higher value, to reduce the pre�ight
tra�c to your bucket.

3. Ensure that the request has an Origin header and that the header value matches at least
one of the Origins values in the bucket's CORS con�guration. Note that the scheme, host,
and port of the values must match exactly. Some examples of acceptable matches are as
follows:

http://origin.example.com matches http://origin.example.com:80 (because 80
is the default HTTP port), but does not match https://origin.example.com,
http://origin.example.com:8080, http://origin.example.com:5151, or
http://sub.origin.example.com.

https://example.com:443 matches https://example.com but not
http://example.com or http://example.com:443.

http://localhost:8080 only matches exactly http://localhost:8080, not
http://localhost:5555 or http://localhost.example.com:8080.

4. Ensure that the HTTP method of the request (if this is a simple request), or the method
speci�ed in Access-Control-Request-Method (if this a pre�ight request), matches at least
one of the Methods values in the bucket's CORS con�guration.



1/25/2020 Configuring cross-origin resource sharing (CORS)  |  Cloud Storage

https://cloud.google.com/storage/docs/configuring-cors/ 7/7

5. If this is a pre�ight request, see if it includes one or more Access-Control-Request-Header
headers. If so, then ensure that each Access-Control-Request-Header value matches a
ResponseHeader value in the bucket's CORS con�guration. All headers named in the
Access-Control-Request-Header must be in the CORS con�guration for the pre�ight
request to succeed and include CORS headers in the response.


