1/25/2020 Object Versioning | Cloud Storage | Google Cloud

To support the retrieval of objects that are deleted or overwritten, Cloud Storage offers the Object
Versioning feature. This page describes the feature and the options available when using it. To learn
how to enable and use Object Versioning see Using_Object Versioning

(/storage/docs/using-object-versioning).

Enable Object Versioning to protect your Cloud Storage data from being overwritten or accidentally
deleted. Enabling Object Versioning increases storage costs (/storage/pricing), which can be partially
mitigated by configuring Object Lifecycle Management (/storage/docs/lifecycle) to delete older object
versions.

in: Objects cannot be recovered from a deleted bucket, even if the bucket used Object Versioning.

You enable Object Versioning for a bucket. Once enabled:

e Cloud Storage creates a noncurrent version of an object each time you perform an overwrite or
delete of the live version, as long as you do not specify the generation number
(/storage/docs/generations-preconditions#_Generations) of the live version.

* Noncurrent versions retain the name of the object, but are uniquely identified by their
generation number.

» Noncurrent versions only appear in requests that explicitly call for object versions to be
included.

e You permanently delete versions of objects by including the generation number in the deletion
request or by using Object Lifecycle Management (/storage/docs/lifecycle).

0 Caution: Specifying the generation number in a deletion request permanently deletes the version, even if the
version is live.
* Noncurrent versions of objects exist independently of any live version.

You can turn versioning on or off for a bucket at any time. Turning off versioning leaves existing
object versions in place and causes the bucket to stop accumulating new noncurrent versions of
objects.

https://cloud.google.com/storage/docs/object-versioning/

177

https://cloud.google.com/storage/docs/using-object-versioning
https://cloud.google.com/storage/pricing
https://cloud.google.com/storage/docs/lifecycle
https://cloud.google.com/storage/docs/generations-preconditions#_Generations
https://cloud.google.com/storage/docs/lifecycle

1/25/2020 Object Versioning | Cloud Storage | Google Cloud

tant: If you change the versioning configuration for a bucket, the change may take time to propagate, and object del¢
rwrites in the bucket may behave according to the previous setting for a short period of time. In order to ensure objec
ns and overwrites behave according to your change, wait at least 30 seconds between changing the versioning

uration and deleting or overwriting objects.

Cloud Storage uses two properties that together identify the version of an object. One property
identifies the version of the object's data; the other property identifies the version of the object's
metadata. These properties are always present with every version of the object, even if Object
Versioning is not enabled. These properties can be used as preconditions for conditional updates

(/storage/docs/generations-preconditions#_Preconditions) to enforce ordering of updates.

Cloud Storage marks every object using the following properties:

Property Description

generation Identifies the content (data) generation, and updates when the content of an object is
overwritten. There is no relationship between the generation numbers of unrelated objects, even if
the objects are in the same bucket.

metagenerationldentifies the metadata generation, and increases every time the metadata
(/storage/docs/metadata#editable) for a given content generation is updated.
metagenerationisreset to 1 for each new generation of an object. The metageneration
property has no meaning without the generation property and should be used only in
conjunction with it. In other words, it is meaningless to compare metadata generations of two
versions that have different data generations.

Object Versioning cannot be enabled on a bucket that currently has a retention policy.
(/storage/docs/bucket-lock).

in: There is no default limit on the number of object versions you can create. Each noncurrent version of an object is
:d at the same rate as the live version of the object. If you enable versioning, consider using Object Lifecycle Managel
age/docs/lifecycle), which can remove the oldest versions of an object as newer versions become noncurrent.

Noncurrent versions of objects have their own metadata, which may differ from the metadata of the
live version. Most importantly, a noncurrent version retains its ACLs (/storage/docs/access-control/lists)

https://cloud.google.com/storage/docs/object-versioning/ 2/7

https://cloud.google.com/storage/docs/generations-preconditions#_Preconditions
https://cloud.google.com/storage/docs/metadata#editable
https://cloud.google.com/storage/docs/bucket-lock
https://cloud.google.com/storage/docs/lifecycle
https://cloud.google.com/storage/docs/access-control/lists

1/25/2020 Object Versioning | Cloud Storage | Google Cloud

and does not necessarily have the same permissions as the live version.

Each version, whether live or noncurrent, has one set of metadata; only the latest metageneration
number refers to metadata. Older metageneration numbers cannot be used to access metadata that
has since been changed.

You can update metadata for a noncurrent version of an object by specifying its generation in your
request. To ensure safe read-modify-write semantics, you can use a metageneration-match

precondition (/storage/docs/generations-preconditions#_Preconditions). Using this precondition causes the
update to fail if the metadata you are attempting to update was changed between the time you read
the metadata and sent the update.

This example shows what happens to the file cat. jpg in a bucket with Object Versioning enabled as
you overwrite, update, and delete the file.

You upload a new image

When you first upload cat. jpg_to Cloud Storage (/storage/docs/uploading-objects), it receives a

generation number and a metageneration number. In this example, the generation number is

13608876971085000. Because the object is new, themetageneration numberis 1.

cat. jpgreceives generation and metageneration numbers even though Object Versioning is not

enabled. You can view these numbers by using the stat command in gsutil. For instructions, see viewing the

object metadata (/storage/docs/viewing-editing-metadata#view).

You enable Object Versioning

At this point, you decide to enable Object Versioning (/storage/docs/using-object-versioning#enable) for

your bucket. Doing so does not affect the generation or metageneration numbers of cat. jpg.

You change the metadata of the image

You update the metadata for cat . jpg by adding_ custom metadata

(/storage/docs/viewing-editing-metadata#edit): color :black. Updating metadata causes the
metageneration valueof cat. jpg toincrease, in this case from 1 to 2. However, the object itself remains
unchanged, so Cloud Storage continues to store only one version of cat . jpg, and the version continues to

have a generation number of 1360887697105000.

https://cloud.google.com/storage/docs/object-versioning/ 37

https://cloud.google.com/storage/docs/generations-preconditions#_Preconditions
https://cloud.google.com/storage/docs/uploading-objects
https://cloud.google.com/storage/docs/viewing-editing-metadata#view
https://cloud.google.com/storage/docs/using-object-versioning#enable
https://cloud.google.com/storage/docs/viewing-editing-metadata#edit

1/25/2020 Object Versioning | Cloud Storage | Google Cloud

You upload a new version of the image

You upload a new version of cat . jpg to your Cloud Storage bucket. When you do so, Object Versioning
moves the existing cat. jpg object into a noncurrent state. The noncurrent version retains the same storage

class and metadata it previously had. The noncurrent version appears only if you perform a versioned listing

(/storage/docs/using-object-versioning#list): it does not appear in normal listing commands. The

noncurrent version is now referenced as: cat. jpg#13606887697105000.

Meanwhile, the newly uploaded cat. jpg becomes the live version of the object. This new cat. jpg gets its
own generation number, in this example 1368887759327000. It also gets its own metadata and a
metageneration number of 1, which means it does not contain the color :black metadata unless you
specify it. When you access or modify cat. jpg, thisis the version that is used. You can alternatively refer to
this version of cat. jpg using its generation number. For example, when using the gsutil tool you would

referto it as cat.jpg#1360887759327000.

You delete the live version of the image

You now delete cat. jpg. When you do this, the version that had generation number 1360887759327000
becomes noncurrent. Your bucket now contains two noncurrent versions of cat. jpg and no live versions.
You can still refer to either noncurrent version by using its generation number, but if you try to access

cat.jpg without a generation number, it fails.

Similarly, a normal object listing of the bucket will not show cat. jpg as one of the objects in the bucket. For

information on listing noncurrent versions of objects, see Listing noncurrent object versions

(/storage/docs/using-object-versioning#list).

You disable Object Versioning

You disable Object Versioning (/storage/docs/using-object-versioning#disable), which stops objects from
becoming noncurrent. Existing noncurrent versions of objects remain in Cloud Storage. Even though Object
Versioning is disabled, cat. jpg#1360887697105000 and cat. jpg#1360887759327000 remain stored in
your bucket until you delete them, either manually (/storage/docs/using-object-versioning#delete) or

through using Object Lifecycle Management (/storage/docs/lifecycle).

You restore one of the noncurrent versions

Even with Object Versioning disabled, you can restore one of the existing noncurrent versions by making_a

copy.of it (/storage/docs/using-object-versioning#copy). To do so, simply name the copy you make

https://cloud.google.com/storage/docs/object-versioning/ 4/7

https://cloud.google.com/storage/docs/using-object-versioning#list
https://cloud.google.com/storage/docs/using-object-versioning#list
https://cloud.google.com/storage/docs/using-object-versioning#disable
https://cloud.google.com/storage/docs/using-object-versioning#delete
https://cloud.google.com/storage/docs/lifecycle
https://cloud.google.com/storage/docs/using-object-versioning#copy

1/25/2020 Object Versioning | Cloud Storage | Google Cloud

cat. jpg. Onceyou do this, your bucket has three versions of cat. jpg: the two noncurrent versions and the

live version that came from making a copy.

This reference table shows what happens when you take certain actions with Object Versioning.

Object

VersioningAction Result

Status

Disabled
Overwrite dog.png with a The new version replaces the live version and receives a new generation
new version. number. The old live version is permanently deleted.
Copy a noncurrent version of A copy of the noncurrent version replaces the live version and receives a
dog.pngover thelive new generation number. The old live version is permanently deleted.
version.!
Delete dog . png. dog.pngis permanently deleted.
Delete a noncurrent version of The noncurrent version is permanently deleted.
dog.png by specifying its
generation number.’

Enabled

Overwrite dog.png with a The new version replaces the live version and receives a new generation
new version. number. The old live version becomes a noncurrent version and keeps the
same generation number.

Copy a noncurrent version of A copy of the noncurrent version replaces the live version and receives a
dog.png over the live version. new generation number. The old live version becomes a noncurrent
version and keeps the same generation number.

Delete the live version of dog. The live version becomes a noncurrent version and keeps the same
png without specifying its generation number.
generation number.

Delete the live version of dog. The live version is permanently deleted.

png by specifying its
generation number.

https://cloud.google.com/storage/docs/object-versioning/

57

1/25/2020 Object Versioning | Cloud Storage | Google Cloud

Object
VersioningAction Result
Status

Delete a noncurrent version of The noncurrent version is permanently deleted.
dog.png by specifying its
generation number.

T A noncurrent version might exist if the bucket had Object Versioning enabled previously.

This section discusses tips to help you work with Object Versioning more effectively.

e The gsutil tool has comprehensive support for working with versioned objects that makes many
tasks involving Object Versioning easier. For example, you can work with noncurrent versions of
objects by appending # and the generation number to the object name. For more information
on using gsutil with Object Versioning, see Object Versioning and Concurrency_Control
(/storage/docs/gsutil/addlhelp/ObjectVersioningandConcurrencyControl).

» Consider using generation and metageneration numbers for conditional updates instead of
ETags. Together, generation and metageneration numbers keep track of all object updates,
including metadata changes, providing a stronger guarantee than ETags.

e You can copy a honcurrent object version to the current live version. See Copying_noncurrent
object versions (/storage/docs/using-object-versioning#copy) for a step-by-step guide to copying
noncurrent versions of objects.

When you do this with Object Versioning enabled, if there already exists a live version of the
object in your bucket, Cloud Storage overwrites it but also creates a new, noncurrent version of
the overwritten object. In such a case, your bucket subsequently contains the overwritten object
(now noncurrent) and two copies of the object that was previously noncurrent (one live copy
and one still-noncurrent copy), all of which incur storage charges. To prevent unnecessary
charges, delete the noncurrent version that you used to make the current live copy.

https://cloud.google.com/storage/docs/object-versioning/ 6/7

https://cloud.google.com/storage/docs/gsutil/addlhelp/ObjectVersioningandConcurrencyControl
https://cloud.google.com/storage/docs/using-object-versioning#copy

1/25/2020 Object Versioning | Cloud Storage | Google Cloud

e When you use generation numbers, a request succeeds as long as there is an object with that
name and generation number, regardless of whether it is live or noncurrent. If no such object
exists, Cloud Storage returns 404 Not Found.

e When you use generation-match preconditions
(/storage/docs/generations-preconditions#_Preconditions), a request succeeds only if the live version
of the requested object has the specified generation number. If no such object exists, or is
noncurrent, Cloud Storage returns 412 Precondition Failed.

* You should avoid using a generation-match precondition at the same time as a generation
number in the object name. If you use both and the numbers match, the use of the precondition
is redundant. If the numbers do not match, the request always fails.

 If you make several concurrent mutation requests with a generation-match precondition, Cloud
Storage's strong consistency allows only one of those requests to succeed. This feature is
useful if your objects are updated from several sources and you need to ensure that users don't
accidentally overwrite them.

 If you set a generation-match precondition to 8 when uploading an object, Cloud Storage
performs the specified request only if there is no live version of the object. For example, if you
perform a PUT request with the XML API to create a new object with the header x-goog-if-
generation-match:@, the request succeeds if the object does not exist, or if there are only
noncurrent versions of the object. If there is a live version of the object, Cloud Storage aborts
the update with a status code of 412 Precondition Failed.

https://cloud.google.com/storage/docs/object-versioning/ 717

https://cloud.google.com/storage/docs/generations-preconditions#_Preconditions

