
1/25/2020 Request rate and access distribution guidelines  |  Cloud Storage

https://cloud.google.com/storage/docs/request-rate/ 1/4

Cloud Storage is a highly scalable service that uses auto-scaling technology to achieve very high
request rates. This page lays out guidelines for optimizing the scaling and performance that Cloud
Storage provides.

Cloud Storage is a multi-tenant service, meaning that users share the same set of underlying
resources. In order to make the best use of these shared resources, buckets have an initial IO capacity
of around 1000 object write requests per second (including uploading, updating, and deleting
objects) and 5000 object read requests per second. These initial read and write rates average to
2.5PB written and 13PB read in a month for 1MB objects. As the request rate for a given bucket
grows, Cloud Storage automatically increases the IO capacity for that bucket by distributing the
request load across multiple servers.

As a bucket approaches its IO capacity limit, Cloud Storage typically takes on the order of minutes to
detect and accordingly redistribute the load across more servers. Consequently, if the request rate on
your bucket increases faster than Cloud Storage can perform this redistribution, you may run into
temporary limits, speci�cally higher latency and error rates. Ramping up the request rate gradually for
your buckets, as described below (#ramp-up), avoids such latency and errors.

Cloud Storage supports consistent object listing (/storage/docs/consistency), which enables users to
run data processing work�ows easily against Cloud Storage. In order to provide consistent object
listing, Cloud Storage maintains an index of object keys for each bucket. This index is stored in
lexicographical order and is updated whenever objects are written to or deleted from a bucket. Adding
and deleting objects whose keys all exist in a small range of the index naturally increases the
chances of contention.

Cloud Storage detects such contention and automatically redistributes the load on the affected index
range across multiple servers. Similar to scaling a bucket's IO capacity, when accessing a new range
of the index, such as when writing objects under a new pre�x, you should ramp up the request rate

https://cloud.google.com/storage/docs/consistency


1/25/2020 Request rate and access distribution guidelines  |  Cloud Storage

https://cloud.google.com/storage/docs/request-rate/ 2/4

gradually, as described below (#ramp-up). Not doing so may result in temporarily higher latency and
error rates.

The following sections provide best practices on how to ramp up the request rate, choose object keys,
and distribute requests in order to avoid temporary limits on your bucket.

To ensure that Cloud Storage auto-scaling always provides the best performance, you should ramp
up your request rate gradually for any bucket that hasn’t had a high request rate in several weeks or
that has a new range of object keys. If your request rate is less than 1000 write requests per second
or 5000 read requests per second, then no ramp-up is needed. If your request rate is expected to go
over these thresholds, you should start with a request rate below or near the thresholds and then
double the request rate no faster than every 20 minutes.

We recommend that you run performance and scalability tests to ensure that this guideline works for your speci�c us

prior to ramping up your tra�c in production.

If you run into any issues such as increased latency or error rates, pause your ramp-up or reduce the
request rate temporarily in order to give Cloud Storage more time to scale your bucket. You should
use exponential backoff (/storage/docs/exponential-backoff) to retry your requests when receiving errors
with 5xx or 429 response codes from Cloud Storage.

Auto-scaling of an index range can be slowed when using sequential names, such as object keys
based on a sequence of numbers or timestamp. This occurs because requests are constantly shifting
to a new index range, making redistributing the load harder and less effective.

In order to maintain a high request rate, avoid using sequential names. Using completely random
object names will give you the best load distribution. If you want to use sequential numbers or
timestamps as part of your object names, introduce randomness to the object names by adding a
hash value before the sequence number or timestamp.

For example, if the original object names you want to use are:

https://cloud.google.com/storage/docs/exponential-backoff


1/25/2020 Request rate and access distribution guidelines  |  Cloud Storage

https://cloud.google.com/storage/docs/request-rate/ 3/4

You can compute the MD5 hash of the original object name and add the �rst 6 characters of the
hash as a pre�x to the object name. The new object names become:

Note that the random string doesn’t necessarily need to be at the beginning of the object name.
Adding a random string after a common pre�x still allows auto-scaling to work, but the effect is
limited to that pre�x, with no consideration of the rest of the bucket.

For example:

The above naming allows for e�cient auto-scaling of objects in images/animals and
images/landscape, but not images/clouds.

As mentioned above, using a random string after a common pre�x only helps with auto-scaling under
that pre�x. Once the requests shift to a new pre�x, you may no longer bene�t from the previous auto-



1/25/2020 Request rate and access distribution guidelines  |  Cloud Storage

https://cloud.google.com/storage/docs/request-rate/ 4/4

scaling effects. This is especially a problem when the pre�xes follow a sequential pattern.

For example, if you write �les under a new timestamp-based pre�x every hour:

Although auto-scaling helps to increase the write rate under a pre�x over time, the write rate resets at
the beginning of each hour. This results in a sub-optimal write rate and periodic increases in latency
and error rate. If you need to write to different pre�xes over time, to avoid this problem, make sure the
new pre�xes are evenly distributed across the entire key range.

Sometimes you'll want to perform a bulk upload or deletion of data in Cloud Storage. In both cases,
you may not have control over the object names. Nevertheless, you can control the order in which the
objects are uploaded or deleted to achieve the highest write or deletion rate possible.

To do so, you should distribute the uploads or deletes across multiple pre�xes. For example, if you
have many folders and many �les under each folder to upload, a good strategy is to upload from
multiple folders in parallel and randomly choose which folders and �les are uploaded. Doing so
allows the system to distribute the load more evenly across the entire key range, which allows you to
achieve a high request rate after the initial ramp-up.


