
1/25/2020 Transcoding of gzip-compressed files | Cloud Storage | Google Cloud

https://cloud.google.com/storage/docs/transcoding 1/5

This page discusses the conversion of �les to and from a gzip-compressed state. The page includes
an overview of transcoding, best practices for working with associated metadata, and compressed
�le behavior in Cloud Storage.

gzip is a form of data compression: it typically reduces the size of a �le. This allows the �le to be
transferred faster and stored using less space than if it were not compressed. Compressing a �le can
reduce both cost and transfer time. Transcoding, in Cloud Storage, is the automatic changing of a
�le's compression before it's served to a requester. When transcoding results in a �le becoming gzip-
compressed, it can be considered compressive, whereas when the result is a �le that is no longer
gzip-compressed, it can be considered decompressive. Cloud Storage supports the decompressive
form of transcoding.

Decompressive transcoding invalidates integrity checking on affected objects. This is because the stored hash repres

mpressed data, while the served data has compression removed. If requesters of your data rely on integrity checking

d not use decompressive transcoding.

If �les are stored as gzip-compressed objects on Cloud Storage, they can be automatically
decompressed before being sent to a requester, resulting in a �le that is identity encoded (that is, not
compressed). This allows for reduced storage costs for the object within Cloud Storage, but gives the
requester the �le itself, without any compression. This is useful, for example, when serving �les to
customers.

In order to be eligible for decompressive transcoding, an object must meet two criteria:

1. The �le is gzip-compressed when stored in Cloud Storage.

2. The associated metadata (/storage/docs/metadata) includes Content-Encoding: gzip.

When an object meets these two criteria, it undergoes decompressive transcoding when requested, in
which case it is also served without a Content-Encoding header. If you want an object that meets

https://cloud.google.com/storage/docs/metadata

1/25/2020 Transcoding of gzip-compressed files | Cloud Storage | Google Cloud

https://cloud.google.com/storage/docs/transcoding 2/5

both criteria to be served in its compressed state (for example, to reduce egress cost or time), there
are two ways to prevent decompressive transcoding from occurring:

If the request for the object includes an Accept-Encoding: gzip header, the object is served as-
is in that speci�c request, along with a Content-Encoding: gzip response header.

If the Cache-Control (https://tools.ietf.org/html/rfc7234#section-5.2) metadata �eld for the object is
set to no-transform, the object is served as a compressed object in all subsequent requests,
regardless of any Accept-Encoding request headers.

While decompressive transcoding allows objects to be stored in Cloud Storage in a compressed state, saving space a

charges for downloading the object are based on its decompressed size, because that is the size of the served object

nformation, see the pricing guide (/storage/pricing).

There are several behaviors that you should be aware of concerning how Content-Type and Content-
Encoding relate to transcoding. Both are metadata stored along with an object. See Viewing and
Editing Object Metadata (/storage/docs/viewing-editing-metadata) for step-by-step instructions on how to
add metadata to objects.

Content-Type (https://tools.ietf.org/html/rfc7231#section-3.1.1.5) should be included in all uploads and
indicates the type of object being uploaded. For example:

indicates that the uploaded object is a plain-text �le. While there is no check to guarantee the
speci�ed Content-Type matches the true nature of an uploaded object, incorrectly specifying its type
will at best cause requesters to receive something other than what they were expecting and could
lead to unintended behaviors.

Content-Encoding (https://tools.ietf.org/html/rfc7231#section-3.1.2.2) is optional and can, if desired, be
included in the upload of �les that are compressed. For example:

https://tools.ietf.org/html/rfc7234#section-5.2
https://cloud.google.com/storage/pricing
https://cloud.google.com/storage/docs/viewing-editing-metadata
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://tools.ietf.org/html/rfc7231#section-3.1.2.2

1/25/2020 Transcoding of gzip-compressed files | Cloud Storage | Google Cloud

https://cloud.google.com/storage/docs/transcoding 3/5

indicates that the uploaded object is gzip-compressed. As with Content-Type, there is no check to
guarantee the speci�ed Content-Encoding is actually applied to the uploaded object, and incorrectly
specifying an object's encoding could lead to unintended behavior on subsequent download
requests.

When uploading a gzip-compressed object, the recommended way to set your metadata is to
specify both the Content-Type and Content-Encoding. For example, for a compressed, plain-
text �le:

This gives the most information about the state of the object to anyone accessing it. Doing so
also makes the object eligible for decompressive transcoding when it is later downloaded,
allowing client applications to handle the semantics of the Content-Type correctly.

Note: To automatically gzip and set the Content-Encoding header of �les you upload, you can include the -

z or -Z �ag when using gsutil cp (/storage/docs/gsutil/commands/cp#options).

Alternatively, you can upload the object with the Content-Type set to indicate compression and
NO Content-Encoding at all. For example:

However, in this case the only thing immediately known about the object is that it is gzip-
compressed, with no information regarding the underlying object type. Moreover, the object is
not eligible for decompressive transcoding.

While it is possible to do so, a �le that is gzip-compressed should not be uploaded with the
compressed nature of the �le omitted. For example, for a gzip-compressed plain-text �le, you
should avoid only setting Content-Type: text/plain. Doing so misrepresents the state of the
object as it will be delivered to a requester.

https://cloud.google.com/storage/docs/gsutil/commands/cp#options

1/25/2020 Transcoding of gzip-compressed files | Cloud Storage | Google Cloud

https://cloud.google.com/storage/docs/transcoding 4/5

Similarly, objects should not be uploaded with an omitted Content-Type, even if a Content-
Encoding is included. Doing so may result in Content-Type being set to a default value, but may
result in the request being rejected, depending on how the upload is made.

You should not set your metadata to redundantly report the compression of the object:

This implies you are uploading a gzip-compressed object that has been gzip-compressed a
second time, when that is not usually the case (if you actually plan to doubly compress a �le,
please see the using gzip on compressed objects (#gzip-gzip) section below). When
decompressive transcoding occurs on such an incorrectly reported object, the object is served
identity encoded, but requesters think that they have received an object which still has a layer of
compression associated with it. Attempts to decompress the object will fail.

Similarly, a �le that is not gzip-compressed should not be uploaded with the Content-Encoding:
gzip. Doing so makes the object appear to be eligible for transcoding, but when requests for the
object are made, attempts at transcoding fail.

Some objects, such as many video, audio, and image �les, not to mention gzip �les themselves, are
already compressed. Using gzip on such objects offers virtually no bene�t: in almost all cases, doing
so makes the object larger due to gzip overhead. For this reason, using gzip on compressed content
is generally discouraged and may cause undesired behaviors.

For example, while Cloud Storage allows "doubly compressed" objects (that is, objects that are gzip-
compressed but also have an underlying Content-Type that is itself compressed) to be uploaded and
stored, it does not allow objects to be served in a doubly compressed state unless their Cache-
Control metadata includes no-transform. Instead, it removes the outer, gzip, level of compression,
drops the Content-Encoding response header, and serves the resulting object. This occurs even for
requests with Accept-Encoding: gzip. The �le that is received by the client thus does not have the
same checksum as what was uploaded and stored in Cloud Storage, so any integrity checks fail.

1/25/2020 Transcoding of gzip-compressed files | Cloud Storage | Google Cloud

https://cloud.google.com/storage/docs/transcoding 5/5

When transcoding occurs, if the request for the object includes a Range header, that header is silently
ignored. This means that requests for partial content are not ful�lled, and the response instead
serves the entire requested object. For example, if you have a 10 GB object that is eligible for
transcoding, but include the header Range: bytes=0-10000 in the request, you still receive the entire
10 GB object.

This behavior arises because it is not possible to select a range from a compressed �le without �rst
decompressing the �le in its entirety: each request for part of a �le would be accompanied by the
decompression of the entire, potentially large, �le, which would poorly utilize resources. You should
be aware of this behavior and avoid using the Range header when using transcoding, as charges are
incurred for the transmission of the entire object and not just the range requested. For more
information on allowed response behavior to requests with Range headers, see the speci�cation
 (https://tools.ietf.org/html/rfc7233#section-3.1).

If requests with Range headers are needed, you should ensure that transcoding does not occur for the
requested object. You can achieve this by choosing the appropriate properties when uploading
objects to begin with. For example, range requests for objects with Content-Type: application/gzip
and no Content-Encoding are performed as requested.

Learn how to use the -z/-Z �ag when using gsutil cp
 (/storage/docs/gsutil/commands/cp#options) to apply gzip content-encoding to �le uploads.

Learn how to view and edit object metadata (/storage/docs/viewing-editing-metadata).

https://tools.ietf.org/html/rfc7233#section-3.1
https://cloud.google.com/storage/docs/gsutil/commands/cp#options
https://cloud.google.com/storage/docs/viewing-editing-metadata

