
1/25/2020 Using Cloud Storage with big data  |  Google Cloud

https://cloud.google.com/storage/docs/working-with-big-data/ 1/10

Cloud Storage is a key part of storing and working with Big Data on Google Cloud. Examples include:

Loading data (/bigquery/loading-data-into-bigquery) into BigQuery.

Using Dataproc (/dataproc/docs/), which automatically installs the HDFS-compatible Cloud
Storage connector, enabling the use of Cloud Storage buckets in parallel with HDFS.

Using a bucket to hold staging �les and temporary data for Data�ow (/data�ow/docs/quickstarts)

pipelines.

For Data�ow, a Cloud Storage bucket is required. For BigQuery and Dataproc, using a Cloud Storage
bucket is optional but recommended.

gsutil is a command-line tool that enables you to work with Cloud Storage buckets and objects easily
and robustly, in particular in big data scenarios. For example, with gsutil you can copy many �les in
parallel with a single command, copy large �les e�ciently, calculate checksums on your data, and
measure performance from your local computer to Cloud Storage.

This page focuses on using gsutil for big data tasks. For a simpler introduction to gsutil, see Getting
Started: Using the gsutil Tool (/storage/docs/getting-started-gsutil). Detailed documentation for all gsutil
commands is available online (/storage/docs/gsutil) and in the built-in help you get from running
gsutil help.

To get the most our of the examples shown on this page, you'll need:

A Linux or Mac OS environment.

Python (https://www.python.org/) version 2.7 installed.

gsutil (/storage/docs/gsutil), which can be installed as part of the Google Cloud SDK (/sdk/docs/).

gsutil con�gured (/storage/docs/gsutil_install#authenticate) to access protected data.

If you have a large number of �les to upload you can use the gsutil -m option, to perform a parallel
(multi-threaded/multi-processing) copy. To recursively copy subdirectories, use the -R �ag of the cp
command. For example, to copy �les including subdirectories from a local directory named top-
level-dir to a bucket, you can use:

https://cloud.google.com/bigquery/loading-data-into-bigquery
https://cloud.google.com/dataproc/docs/
https://cloud.google.com/dataflow/docs/quickstarts
https://cloud.google.com/storage/docs/getting-started-gsutil
https://cloud.google.com/storage/docs/gsutil
https://www.python.org/
https://cloud.google.com/storage/docs/gsutil
https://cloud.google.com/sdk/docs/
https://cloud.google.com/storage/docs/gsutil_install#authenticate


1/25/2020 Using Cloud Storage with big data  |  Google Cloud

https://cloud.google.com/storage/docs/working-with-big-data/ 2/10

You can use wildcards (/storage/docs/gsutil/addlhelp/WildcardNames) to match a speci�c set of names
for an operation. For example, to copy only �les that start with image:

You can remove �les using the same wildcard:

In addition to copying local �les to the cloud and vice versa, you can also copy in the cloud, for
example:

gsutil automatically detects that you're moving multiple �les and creates them in a new directory
named subdir2.

If you want to synchronize a local directory with a bucket or vice versa, you can do that with the
gsutil rsync (/storage/docs/gsutil/commands/rsync) command. For example, to make gs://example-
bucket match the contents of the local directory local-dir you can use:

If you use the rsync -d �ag, it signals gsutil to delete �les at the destination (gs://example-bucket in
the command above) that aren't present at the source (local-dir). You can also synchronize
between two buckets.

https://cloud.google.com/storage/docs/gsutil/addlhelp/WildcardNames
https://cloud.google.com/storage/docs/gsutil/commands/rsync


1/25/2020 Using Cloud Storage with big data  |  Google Cloud

https://cloud.google.com/storage/docs/working-with-big-data/ 3/10

In general, when working with big data, once your data is in the cloud it should stay there. Once your
data is in Google's cloud, it's very fast to transfer it to other services like Compute Engine. Also, egress
from buckets to Google Cloud services in the same location or a sub-location is free. For more
information, see Network Pricing (/storage/pricing#network-pricing).

To copy a large local �le to a bucket, use:

To copy a large �le from an existing bucket (e.g., Cloud Storage public data
 (/storage/docs/public-datasets/)), use:

gsutil takes full advantage of Google Cloud Storage resumable upload and download features. For
large �les this is particularly important because the likelihood of a network failure at your ISP
increases with the size of the data being transferred. By resuming an upload based on how many
bytes the server actually received (/storage/docs/resumable-uploads), gsutil avoids unnecessarily
resending bytes and ensures that the upload can eventually be completed. The same logic is applied
for downloads based on the size of the local �le.

If gsutil cp does not give you the performance you need when uploading large �les, you can
consider con�guring composite uploads (#composite).

Typical big data tasks where you will want to con�gure a bucket include when you move data to a
different storage class (/storage/docs/storage-classes), con�gure log access (/storage/docs/access-logs),
con�gure object versioning (/storage/docs/object-versioning), or set up a lifecycle rule
 (/storage/docs/lifecycle).

You can list a bucket's con�guration details with gsutil ls -L -b
 (/storage/docs/gsutil/commands/ls#listing-bucket-details):

https://cloud.google.com/storage/pricing#network-pricing
https://cloud.google.com/storage/docs/public-datasets/
https://cloud.google.com/storage/docs/resumable-uploads
https://cloud.google.com/storage/docs/storage-classes
https://cloud.google.com/storage/docs/access-logs
https://cloud.google.com/storage/docs/object-versioning
https://cloud.google.com/storage/docs/lifecycle
https://cloud.google.com/storage/docs/gsutil/commands/ls#listing-bucket-details


1/25/2020 Using Cloud Storage with big data  |  Google Cloud

https://cloud.google.com/storage/docs/working-with-big-data/ 4/10

In the output, notice the bucket con�guration information, most of which is also con�gurable via
gsutil:

CORS (/storage/docs/cross-origin): controls Cross-Origin-Resource-Sharing settings for a bucket.

Logging (/storage/docs/access-logs): allows you to log bucket usage.

Website (/storage/docs/website-con�guration): allows objects in the bucket to act as web pages or
be used as static assets in a website.

Versioning (/storage/docs/object-versioning): causes deletes on objects in the bucket to create
noncurrent versions.

Storage Class (/storage/docs/storage-classes): allows you to set the set storage class during
bucket creation.

Lifecycle (/storage/docs/lifecycle): allows periodic operations to run on the bucket - the most
common is stale object deletion.

For example, suppose you only want to keep �les in a particular bucket around for just one day, then
you can set up the lifecycle rule for the bucket with:

Now, any objects in your bucket older than a day will automatically get deleted from this bucket. You
can verify the con�guration you just set with the gsutil lifecycle
 (/storage/docs/gsutil/commands/lifecycle) command (other con�guration commands work in a similar
fashion):

When working with big data, you will likely work on �les collaboratively and you'll need to be able to
give access to speci�c people or groups. Each object has an ACL that describes who can access it.

https://cloud.google.com/storage/docs/cross-origin
https://cloud.google.com/storage/docs/access-logs
https://cloud.google.com/storage/docs/website-configuration
https://cloud.google.com/storage/docs/object-versioning
https://cloud.google.com/storage/docs/storage-classes
https://cloud.google.com/storage/docs/lifecycle
https://cloud.google.com/storage/docs/gsutil/commands/lifecycle


1/25/2020 Using Cloud Storage with big data  |  Google Cloud

https://cloud.google.com/storage/docs/working-with-big-data/ 5/10

You can see a friendly view of an object's ACLs using the gsutil acl
 (/storage/docs/gsutil/commands/acl) command:

The entity that uploaded the object (in this case, your Google account as represented by the OAuth2
refresh token) automatically gets OWNER access to the object (see Project members and
permissions (/storage/docs/projects#permissions)).

The rest of the ACL for the object is determined by the default object ACL on the bucket. This is a
common point of confusion -- the Bucket ACL controls access to the bucket (such as the ability to
create and list objects), whereas the default object ACL controls the ACL that objects get upon
creation; the two are not necessarily the same! For more information on the difference between the
two, see Access Control (/storage/docs/access-control).

You can con�gure your bucket so that anyone with a Google account can list the �les in your bucket.
Note that this doesn’t give them access to the data. So while users could see that bigfile exists in
your bucket, they couldn’t see its contents.

You can view the bucket’s ACL with the ls -Lb command:

Now anyone who is authenticated with a Google account can list �les in the bucket.

The following three sections cover the three common scenarios, sharing data publicly, with a group,
and with a person.

For a world-readable bucket, you can con�gure:

https://cloud.google.com/storage/docs/gsutil/commands/acl
https://cloud.google.com/storage/docs/projects#permissions
https://cloud.google.com/storage/docs/access-control


1/25/2020 Using Cloud Storage with big data  |  Google Cloud

https://cloud.google.com/storage/docs/working-with-big-data/ 6/10

For collaborators who are not members of your Google Cloud project, we recommend that you create
a Google group (https://support.google.com/groups/answer/2464926?hl=en) and then add the Google
group to the bucket. For example, for the gs-announce
 (https://groups.google.com/forum/#!forum/gs-announce) Google Group, you can con�gure:

For more information, see Using a Group to Control Access to Objects
 (/storage/docs/collaboration#group).

For many collaborators use a group. For one person, you can con�gure access as follows:

https://support.google.com/groups/answer/2464926?hl=en
https://groups.google.com/forum/#!forum/gs-announce
https://cloud.google.com/storage/docs/collaboration#group


1/25/2020 Using Cloud Storage with big data  |  Google Cloud

https://cloud.google.com/storage/docs/working-with-big-data/ 7/10

You can use the gsutil du command to display the total space used by all objects for a speci�ed
bucket. For example:

See the gsutil du (/storage/docs/gsutil/commands/du) command help for more options you can use,
including how to return the size of all objects underneath a pre�x.

You can also set up bucket logging where the total size of a bucket is automatically reported once a
day. For more information, see Access Logs (/storage/docs/access-logs). If the number of objects in
your bucket is large (e.g., hundreds of thousands or millions), this is a much more e�cient way to
track space usage. The gsutil du command calculates space usage by making bucket listing
requests, which for large buckets can take a long time.

You can count the number of �les in a bucket with:

You can clean a bucket quickly with the following command:

When performing copies, the gsutil cp and gsutil rsync commands validate that the checksum of
the source �le matches the checksum of the destination �le. In the rare event that checksums do not
match, gsutil will delete the invalid copy and print a warning message. For more information, see
Checksum Validation (/storage/docs/gsutil/commands/cp#checksum-validation).

https://cloud.google.com/storage/docs/gsutil/commands/du
https://cloud.google.com/storage/docs/access-logs
https://cloud.google.com/storage/docs/gsutil/commands/cp#checksum-validation


1/25/2020 Using Cloud Storage with big data  |  Google Cloud

https://cloud.google.com/storage/docs/working-with-big-data/ 8/10

You can also use gsutil to get the checksum of a �le in a bucket or calculate the checksum of a local
object. For example, suppose you copy a Cloud Life Sciences public data
 (/life-sciences/docs/resources/public-datasets) �le to your working bucket with:

Now, you can get the checksums of both the public bucket version of the �le and your version of the
�le in your bucket to ensure they match:

Now, suppose your data is in a �le at a local data center and you copied it into Cloud Storage. You
can use gsutil hash (/storage/docs/gsutil/commands/hash) to get the checksum of your local �le and
then compare that with the checksum of the �le you copied to a bucket. To get the checksum of a
local �le use:

For non-composite objects, running gsutil ls -L on an object in a bucket returns output like the
following:

https://cloud.google.com/life-sciences/docs/resources/public-datasets
https://cloud.google.com/storage/docs/gsutil/commands/hash


1/25/2020 Using Cloud Storage with big data  |  Google Cloud

https://cloud.google.com/storage/docs/working-with-big-data/ 9/10

Running gsutil hash on a local �le returns output like the following:

Both outputs have a CRC32c and MD5 value. There are no MD5 value for objects uploaded as
composite objects as is the case when you con�guring composite uploads (#composite) for gsutil.

You can improve the performance when uploading large �les by con�guring gsutil to upload each �le
by breaking it into parts, uploading the parts in parallel, and then using Cloud Storage's composite
object feature to put the parts back together into a composite object. For more information, see
Parallel Composite Uploads (/storage/docs/gsutil/commands/cp#parallel-composite-uploads). Parallel
composite uploads are disabled by default.

on: Parallel composite uploads should not be used with objects you upload with a storage class of Nearline Storage,

ne Storage, or Archive Storage: doing so incurs early deletion charges for each composite piece.

Before con�guring parallel composite uploads, you should be aware of the advantages and
disadvantages. The primary advantage is that uploads for large �les can be signi�cantly faster if
network and disk speed are not limiting factors. The disadvantages of parallel composite uploads
are:

When you (or your collaborators) use gsutil to download composite uploads (like those created
using gsutil parallel composite uploads), we strongly recommend installing a compiled crcmod,
as discussed in gsutil help crcmod (/storage/docs/gsutil/addlhelp/CRC32CandInstallingcrcmod). If
you don't, you will see a message warning you that downloading composite objects without a
compiled crcmod will run very slowly. Note that compiled crcmod is recommended for
downloading, regardless of whether the parallel composite upload option is on or not.

Composite objects in a bucket have no MD5 hash (#md5).

After you have con�gured and compiled crcmod following the steps in gsutil help crcmod
 (/storage/docs/gsutil/addlhelp/CRC32CandInstallingcrcmod), con�gure your .boto �le so that parallel
composite uploads are on by default. For more information, see gsutil con�g

https://cloud.google.com/storage/docs/gsutil/commands/cp#parallel-composite-uploads
https://cloud.google.com/storage/docs/gsutil/addlhelp/CRC32CandInstallingcrcmod
https://cloud.google.com/storage/docs/gsutil/addlhelp/CRC32CandInstallingcrcmod
https://cloud.google.com/storage/docs/gsutil/commands/config#additional-configuration-controllable-features


1/25/2020 Using Cloud Storage with big data  |  Google Cloud

https://cloud.google.com/storage/docs/working-with-big-data/ 10/10

 (/storage/docs/gsutil/commands/con�g#additional-con�guration-controllable-features), and in particular the
parallel_composite_upload_* settings in the GSUtil section of the .boto �le.

If you have enabled parallel composite uploads, and you upload a large �le to your bucket, you'll
notice that the �le is uploaded in 50MB chunks instead of a single upload. If any failures occurred,
for example, due to temporary network issues, you can re-run the copy with the no-clobber (-n) �ag to
transmit just the missing �les.

Remember, that when checking the data integrity of a �le in a bucket that was uploaded as a
composite object, there is only a CRC32c hash value and no MD5 value.

If you con�gured parallel composite uploads (#composite), there can be temporary �les left over from
aborted uploads. If you do not wish to resume the upload, it's okay to delete these temporary �les:

https://cloud.google.com/storage/docs/gsutil/commands/config#additional-configuration-controllable-features

