
1/25/2020 Using bfloat16 with TensorFlow models | Cloud TPU | Google Cloud

https://cloud.google.com/tpu/docs/bfloat16 1/4

Machine learning (ML) research shows that many machine learning models can tolerate lower
precision arithmetic without degradation of converged accuracy. Many models reach results
with the same converged accuracy using b�oat16 as when using 32 bit �oating point numerics
and some models even show improved converged accuracy with b�oat16.

This document concerns mixed precision training in the sense of storing activations and
gradients in memory using the b�oat16 format. (For more background on mixed precision
training see Mixed Precision Training (https://arxiv.org/abs/1710.03740).) This document does not
discuss the use of b�oat16 in the MXU on Cloud TPU.

The following topics apply to ML models using TensorFlow:

Description of Google's custom 16-bit brain �oating-point, b�oat16.

Performance advantages of using b�oat16 in memory for ML models on hardware that
supports it, such as Cloud TPU.

How to store activations and gradients in memory using b�oat16 for a TPU model in
TensorFlow.

By default, TensorFlow stores all variables in 32-bit �oating-point (fp32). Using b�oat16 for the
activations and gradients speeds up device step time and decreases memory usage. See
Changing your model (#changing) for determining the bene�ts of using b�oat16 for activations
and gradients in your model.

The b�oat16 format is [1:8:7], which has one sign bit, eight exponent bits, and seven mantissa
bits plus one implicit mantissa bit. By comparison, the standard 16-bit �oating-point (fp16)
format is [1:5:10]. Notice that the fp16 format has only 5 exponent bits. Because of these
characteristics, b�oat16 has a greater dynamic range than fp16. The b�oat16 range is useful
for things like gradients that can be outside the dynamic range of fp16 and thus require loss
scaling; b�oat16 can represent such gradients directly. In addition, you can use the b�oat16
format to accurately represent all integers [-256, 256], which means you can encode an int8 in
b�oat16 without loss of accuracy.

https://arxiv.org/abs/1710.03740

1/25/2020 Using bfloat16 with TensorFlow models | Cloud TPU | Google Cloud

https://cloud.google.com/tpu/docs/bfloat16 2/4

The following �gure shows three �oating-points formats

fp32 - IEEE single-precision �oating-point

fp16 - IEEE half-precision �oating point

b�oat16 - 16-bit brain �oating point

The dynamic range of b�oat16 is greater than that of fp16.

Cloud TPU supports storing values such as activations and gradients in b�oat16 format. Using
b�oat16 reduces the size of data in memory and allows larger models to �t in the same amount
of memory. Using b�oat16 can also reduce rematerialization which improves step time.

Some operations are memory-bandwidth-bound, which means the memory bandwidth
determines the time spent in such operations. Storing inputs and outputs of memory-
bandwidth-bound operations in the b�oat16 format reduces the amount of data that must be
transferred, thus improving the speed of the operations.

The following chart shows improvements seen in our internal experiments.

1/25/2020 Using bfloat16 with TensorFlow models | Cloud TPU | Google Cloud

https://cloud.google.com/tpu/docs/bfloat16 3/4

By default, activations, gradients, and weights are stored in fp32 in memory. You can use
b�oat16 for activations and gradients, leaving weights in fp32, and then compare your model's
performance between using b�oat16 and fp32 to determine the bene�ts.

1. Run the model in fp32 using capture_tpu_pro�le
 (/tpu/docs/cloud-tpu-tools#install_cloud_tpu_pro�ler).

2. To view the model's step time and converged accuracy, use the pro�le viewer in
TensorBoard. (See Using Cloud TPU tools (/tpu/docs/cloud-tpu-tools) for details.)

3. Cast the input to b�oat16 in your input pipeline within the record parser so that the
conversion can be done in parallel rather than at the end of the input_fn. Doing this
converts all of the activations and gradients in the model to b�oat16.

For example:

https://cloud.google.com/tpu/docs/cloud-tpu-tools#install_cloud_tpu_profiler
https://cloud.google.com/tpu/docs/cloud-tpu-tools

1/25/2020 Using bfloat16 with TensorFlow models | Cloud TPU | Google Cloud

https://cloud.google.com/tpu/docs/bfloat16 4/4

4. Create your network under the b�oat16 scope and then cast the outputs of the model to
�oat32.
 (https://github.com/tensor�ow/tpu/blob/master/models/o�cial/resnet/resnet_main.py#L306)

After you con�gure your model to use tf.b�oat16 for activations, check the following to see the
impact of b�oat16 on your model:

1. Run the model with b�oat16 using capture_tpu_pro�le
 (/tpu/docs/cloud-tpu-tools#install_cloud_tpu_pro�ler).

2. To view the model's step time and converged accuracy, use the pro�le viewer in
TensorBoard. (See Using Cloud TPU tools (/tpu/docs/cloud-tpu-tools) for details.)

3. Compare the step time for b�oat16 and fp32. Step time typically improves for b�oat16.

4. Compare converged accuracy for b�oat16 versus fp32. Usually they are identical, but
values can be better or worse than expected.

If you do not already know what range of variation to expect of your model, you might need
multiple runs to determine run-to-run variation in converged accuracy.

If your pro�le shows that the processing time is faster but the input pipeline has become a
bottleneck, optimize your input pipeline to realize an even greater speed advantage. See Data
Input Pipeline Performance (https://www.tensor�ow.org/guide/performance/datasets) for general
guidance on improving TensorFlow pipeline performance.

A best practice for training and inference is to use the same precision for both. It is possible to
train using fp32 for activations, and then run inference with b�oat16 (or vice versa). If you opt
for mismatched precision, verify converged accuracy using the precision that was used for
inference.

https://github.com/tensorflow/tpu/blob/master/models/official/resnet/resnet_main.py#L306
https://cloud.google.com/tpu/docs/cloud-tpu-tools#install_cloud_tpu_profiler
https://cloud.google.com/tpu/docs/cloud-tpu-tools
https://www.tensorflow.org/guide/performance/datasets

