
1/25/2020 Performance Guide | Cloud TPU | Google Cloud

https://cloud.google.com/tpu/docs/performance-guide/ 1/8

Cloud TPU provides high performance at low cost. You can enhance Cloud TPU performance further
by adjusting Cloud TPU con�guration parameters for your application and by identifying and
resolving any bottlenecks that are limiting performance.

This guide helps you maximize Cloud TPU performance by showing you how to:

Improve XLA compiler e�ciencies (#xla-e�ciencies).

Identify and use a set of tuneable TensorFlow functions (#tf-fcts).

In addition, the following resources describe how to:

Tune the input pipeline
 (https://www.tensor�ow.org/versions/master/performance/datasets_performance).

Use Cloud TPU tools (/tpu/docs/cloud-tpu-tools) to identify performance bottlenecks.

Improve overall performance to converge faster (https://www.youtube.com/watch?v=SxOsJPaxHME)

.

These pages only provide a set of guidelines. It might be necessary to deviate from their advice for any number of rea

ample, fundamental model architecture requirements). The guidelines will change over time as improvements are ma

oud TPU software stack.

XLA is a compiler for machine learning that can produce binaries for TPUs, CPUs, GPUs and other
platforms. It is part of the standard TensorFlow code base. TensorFlow models for Cloud TPU are
translated to an XLA graph, which XLA then compiles to a TPU executable. More details about how
XLA and TensorFlow interact are included in the XLA overview
 (https://www.tensor�ow.org/performance/xla/).

The Cloud TPU hardware is different from CPUs and GPUs. At a high level, CPUs can be characterized
as having a low number of high performing threads. GPUs can be characterized as having a very
high number of low performing threads. A Cloud TPU, with its 128 x 128 matrix unit, can be thought
of as either a single, very powerful thread, which can perform 16K ops per cycle, or 128 x 128 tiny,
simple threads that are connected in pipeline fashion. Correspondingly, when addressing memory,

https://www.tensorflow.org/versions/master/performance/datasets_performance
https://cloud.google.com/tpu/docs/cloud-tpu-tools
https://www.youtube.com/watch?v=SxOsJPaxHME
https://www.tensorflow.org/performance/xla/

1/25/2020 Performance Guide | Cloud TPU | Google Cloud

https://cloud.google.com/tpu/docs/performance-guide/ 2/8

multiples of 8 (�oats) are desirable, as well as multiples of 128 for operations targeting the matrix
unit.

Arrays in the Cloud TPU are tiled. This entails padding one of the dimensions to a multiple of 8, and a
different dimension to a multiple of 128. XLA performs data layout transformations and data is
arranged in memory such that the hardware can e�ciently process the data. These transformations
are driven by heuristics. While they are bene�cial in most cases, there is always potential for the
compiler to do the wrong thing. To achieve the highest performance, it can be bene�cial to
experiment with different model con�gurations.

One consequence of using a tiled memory scheme is that e�cient memory utilization is dependent
on the amount of memory wasted on padding overhead. To use the Cloud TPU in the most e�cient
way, use dimension sizes that minimize the overhead of tiling.

For example, a convolution result has (1) batch, (2) output feature, and (3) output spatial dimensions.
One of either the batch or output feature dimensions will be padded to a multiple of 8 while the other
will be padded to a multiple of 128. The output spatial dimensions will not be padded.

In general, for an operation with spatial dimensions (tf.nn.pool, tf.conv2d, etc.), the spatial
dimensions are never padded.

Batch and feature dimensions are subject to padding, so be careful when determining the batch and
feature sizes. To make best use of the 128 x 128 matrix unit, strive for reasonably large values
(>=128) of batches or features, preferably both.

In most cases, a batch size of 128 is su�cient to keep the Cloud TPU matrix unit fully occupied.
Running with larger batch sizes also works well on the Cloud TPU but using a batch size that is a
multiple of 128 is recommended. If your model cannot work in such a con�guration, try to use a
batch size that is a multiple of 8, to minimize the impact of padding.

Similarly, feature dimensions are also mapped to a dimension which is padded to either 8 or 128,
depending on decisions made by the XLA layout algorithm. This means that the feature dimension
wastes the least amount of space at multiples of either 8 or 128.

1/25/2020 Performance Guide | Cloud TPU | Google Cloud

https://cloud.google.com/tpu/docs/performance-guide/ 3/8

Fusion is a general technique that the XLA compiler uses to optimize programs. A fused operation is
the combination of multiple constituent operations that are to be executed in combination.

For example, consider the following series of operations:

This code is roughly equivalent to the following pseudo code:

With fusion, the array accesses happen at the same time:

In this example, the number of memory round trips is reduced and XLA didn't need to allocate any
space for 'tmp'.

1/25/2020 Performance Guide | Cloud TPU | Google Cloud

https://cloud.google.com/tpu/docs/performance-guide/ 4/8

Fusion is a critical optimization and bene�ts the Cloud TPU in several ways:

It reduces memory transfers by removing the need to store intermediate results in main
memory, which is slow.

It allows greater utilization of hardware units which would otherwise be unutilized.

It can reduce the memory utilization of a model as fewer buffers need to be live at the same
time.

Broadcasting implicitly occurs when two tensors with different, but compatible, shapes are
combined.

For example, tf.add(vector, matrix) requires the vector to be broadcasted to the shape of the
matrix. The result of the operation has the same shape as the matrix. For more details, see the guide
to broadcasting arrays (https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html).

While broadcasts can often be fused with their consumers, forcing a broadcast to be materialized
results in poor performance and increased memory pressure.

In the following example, the broadcast implicit in the addition of a vector and matrix cannot be
fused with the argmax resulting in a materialized broadcast:

See the full list of TensorFlow operations (https://cloud.google.com/tpu/docs/tensor�ow-ops) available on
Cloud TPU.

Transposing the result of either of the operands is effectively free.

https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
https://cloud.google.com/tpu/docs/tensorflow-ops

1/25/2020 Performance Guide | Cloud TPU | Google Cloud

https://cloud.google.com/tpu/docs/performance-guide/ 5/8

Note that tf.matmul supports fusing into its input and output. This means that activation
functions or biases applied directly to the output of tf.matmul have low overhead.

For the activations, the batch and feature dimensions are padded to a multiple of either 8 or
128.

First XLA tracks the most common size of batch dimensions for convolutions in the
module. This helps distinguish between forward convolutions, activation gradient
convolutions, and kernel gradient convolutions.

If the most common batch size is greater than or equal to 64:

Batch is padded to a multiple of 128 and feature padded to a multiple of 8 for
forwards and backwards convolutions.

Batch is padded to a multiple of 8 and feature padded to a multiple of 128 for
gradient update convolutions.

If the most common batch size is less than 64:

Batch is padded to a multiple of 8 and feature padded to a multiple of 128 for
forwards and backwards convolutions.

Batch is padded to a multiple of 128 and feature padded to a multiple of 8 for
gradient update convolutions.

Transposing the activations right before sending it to a convolution is free if the
transpose only swaps the input feature and batch dimensions.

For the kernel, the input feature and output feature dimensions are padded to a multiple of
either 8 or 128. The exact determination is in�uenced by the producers and other consumers of
the kernel.

Transposing a kernel right before sending it to a convolution is free if the transpose only
swaps the input and output feature dimensions.

For the result, the batch and feature dimensions are padded to a multiple of either 8 or 128.

Transposing the result of a convolution is free if the transpose only swaps the batch and
output feature dimensions.

Note that tf.nn.conv_n_d supports fusing into its result, the activations and/or the kernel. This
means that activation functions or biases applied directly to the output have low overhead.

1/25/2020 Performance Guide | Cloud TPU | Google Cloud

https://cloud.google.com/tpu/docs/performance-guide/ 6/8

The padding rules apply: spatial dimensions are more major than batch and feature. Each of
batch and feature may be padded to a multiple of either 8 or 128.

Typically, the layout of a pool operation matches the convolutions that �ow in or out of it.

The gradient calculation for tf.nn.max_pool may be slower than their tf.nn.avg_pool
equivalent. Consider switching from max-pooling to average-pooling when possible.

Avoid unnecessary slices and concatenations. Slices and concatenations in a dimension that
has been padded is considerably more expensive.

Data movement is minimized if the slice dimension has no padding overhead.

Transposing any of the operands of a tf.matmul or its result are free.

Transposing the activations of a tf.conv_n_d is free if it swaps the batch and input feature
dimensions.

Transposing the kernel of a tf.conv_n_d is free if it swaps the input and output feature
dimensions.

Transposing the result of a tf.conv_n_d is free if it swaps the batch and output feature
dimensions.

These are costly because they involve moving data from padded to unpadded dimensions and
vice-versa.

Reshaping may be costly on Cloud TPU when moving around data in a padded dimension.

It can be bene�cial to reshape data to R1 on the host and reshape it back to some higher
dimension shape on the device if there is substantial padding. This can make transfers

1/25/2020 Performance Guide | Cloud TPU | Google Cloud

https://cloud.google.com/tpu/docs/performance-guide/ 7/8

between host and device more e�cient.

It can also help with peak memory utilization because the packed parameter can be
unpacked on-demand.

Pseudo random-number generation for uniform or Bernoulli distributions is very fast.

Normal distributions are slightly more expensive than uniform or Bernoulli distributions.

Pseudo random-number generation for Categorical/Multinomial distributions is considerably
more expensive.

Multiple reductions with the same input and output shape can be performed in parallel via
fusion.

Try to rewrite sequential chains of reductions into parallel ones, if possible.

Reductions support fusing elementwise operations into their input but not their output. When
possible, rewrite expressions to promote fusion. For example:

Into:

The Cloud TPU compiler can e�ciently lower TensorFlow's fused variants of batch
normalization. Using them can be considerably more e�cient than the alternative.

1/25/2020 Performance Guide | Cloud TPU | Google Cloud

https://cloud.google.com/tpu/docs/performance-guide/ 8/8

Prefer tf.nn.fused_batch_norm over tf.nn.batch_normalization.

For tf.layers.batch_normalization, set the "fused" argument to true.

These are not fully optimized yet and may have worse performance than an equivalent, normal
convolution.

