
1/25/2020 Processing large images with Cloud TPU | Cloud TPU | Google Cloud

https://cloud.google.com/tpu/docs/spatial-partitioning 1/4

AI & Machine Learning Products

Cloud TPU

Documentation Guides

This document covers the use of spatial partitioning with Cloud TPUs and TPUEstimator to
enable training for very large images and video.

The Cloud TPU spatial partitioning feature makes it possible to split up a single image across
several TPU chips. Spatial partitioning allows you to easily scale models to run with input
images too large to �t into the memory available to a single core on an accelerator chip.

This feature distributes activations across multiple TPU cores, allowing you to scale your model
to use 2, 4, 8 or even 16 cores for training. Scaling the number of processors available for
training removes the need for downsampling image data which provides both better accuracy
and more e�cient training performance.

You can apply spatial partitioning to tasks such as:

3D Computer Tomography (CT) scan image segmentation

video content analysis

object detection for autonomous driving without downsampling your image data.

Enabling spatial pa�itioning with TPUEstimator

In Tensor�ow, the XLA optimizing compiler for Tensor�ow automatically handles the
communications between all of the Cloud TPU cores. No changes to the code are required to
enable spatial partitioning for a model. Because TPUEstimator supports the spatial partitioning
API, all you need to do is to con�gure how to partition each input tensor in TPUCon�g.

 (https://cloud.google.com/products/machine-learning/)

 (https://cloud.google.com/tpu/)

 (https://cloud.google.com/tpu/docs/)

Processing large images with Cloud TPU

https://cloud.google.com/products/machine-learning/
https://cloud.google.com/tpu/
https://cloud.google.com/tpu/docs/
https://cloud.google.com/tpu/docs/

1/25/2020 Processing large images with Cloud TPU | Cloud TPU | Google Cloud

https://cloud.google.com/tpu/docs/spatial-partitioning 2/4

Example

The following code shows a TPUCon�g example of four-way spatial partitioning for an image
classi�cation model. The tensor is split into four parts along the height dimension (assuming
the tensor has the shape [batch, height, width, channel]).

For spatial partitioning, the input pipeline must be in tf.data format and the
per_host_input_for_training value (the train_batch_size) must be set to PER_HOST_V2. The
num_cores_per_replica you specify determines the maximum number of partitions into which
you can split an image.

The input_partition_dims values provide a list with two elements: feature_partition_dims
and label_partition_dims that describe how to partition the input tensors. The structure of
feature_partition_dims and label_partition_dims must match the structure of features and
labels from input_fn. Specify "None" for the label partition so that labels are not split.

Running reference models with spatial pa�itioning

2D object detection

tpu_config=tpu_config.TPUConfig(
 iterations_per_loop=100,
 num_cores_per_replica=4,
 per_host_input_for_training=tpu_config.InputPipelineConfig.PER_HOST_V2,
 input_partition_dims=[[1, 4, 1, 1], None]]



1/25/2020 Processing large images with Cloud TPU | Cloud TPU | Google Cloud

https://cloud.google.com/tpu/docs/spatial-partitioning 3/4

RetinaNet (https://github.com/tensor�ow/tpu/tree/master/models/o�cial/detection) is an object
detection model that locates objects in images with a bounding box and classi�es the identi�ed
objects. Training the model with very large images is a challenge since the largest image that
can �t on a single Cloud TPU core (with per-device batch 8) is 1280x1280. You can train images
that are 4x larger by spatially partitioning the model across 8 TPU cores, as shown.

Image size TPU type TPU cores Global batch size Step Time

1280x1280 v3-8 8 64 910 ms

2560x2560 v3-64 64 64 822 ms

3D image segmentation

3D UNet (https://github.com/tensor�ow/tpu/tree/master/models/o�cial/unet3d) is a popular dense
3D segmentation model which has been widely used in the medical image domain. The original
resolution for CT images can be as large as 256x256x256, which do not �t into a single TPU
core, so researchers must often downsample images. With TPU spatial partitioning, you can
directly �t original resolution images using 16-way spatial partitioning.

Image size TPU type TPU cores Global batch size Step Time

128x128x128 v3-8 8 32 3.428s

2560x2560 v3-64 64 32 3.02s

Additional resources

Spatial partitioning guide
 (https://github.com/tensor�ow/estimator/blob/master/tensor�ow_estimator/python/estimator/tpu
/spatial_partitioning_api.md)

- more instruction on how to con�gure spatial partitioning.

Using the TPUEstimator API on Cloud TPU
 (https://cloud.google.com/tpu/docs/using-estimator-api)

https://github.com/tensorflow/tpu/tree/master/models/official/detection
https://github.com/tensorflow/tpu/tree/master/models/official/unet3d
https://github.com/tensorflow/estimator/blob/master/tensorflow_estimator/python/estimator/tpu/spatial_partitioning_api.md
https://cloud.google.com/tpu/docs/using-estimator-api

1/25/2020 Processing large images with Cloud TPU | Cloud TPU | Google Cloud

https://cloud.google.com/tpu/docs/spatial-partitioning 4/4

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License
 (https://creativecommons.org/licenses/by/4.0/), and code samples are licensed under the Apache 2.0 License
 (https://www.apache.org/licenses/LICENSE-2.0). For details, see our Site Policies
 (https://developers.google.com/terms/site-policies). Java is a registered trademark of Oracle and/or its a�liates.

Last updated December 4, 2019.

https://creativecommons.org/licenses/by/4.0/
https://www.apache.org/licenses/LICENSE-2.0
https://developers.google.com/terms/site-policies

