
1/25/2020 System Architecture | Cloud TPU | Google Cloud

https://cloud.google.com/tpu/docs/system-architecture/ 1/9

This document describes the architecture for all of the hardware and software components of
the Cloud TPU system.

Tensor Processing Units (TPUs) are Google's custom-developed application-speci�c integrated
circuits (ASICs) used to accelerate machine learning workloads. These TPUs are designed from
the ground up with the bene�t of Google's deep experience and leadership in machine learning.

You can use Cloud TPU and TensorFlow (https://www.tensor�ow.org/) to run your own machine
learning workloads on Google's TPU accelerator hardware (/tpu/). Cloud TPU is designed for
maximum performance and �exibility to help researchers, developers, and businesses build
TensorFlow compute clusters that can use CPUs, GPUs, and TPUs. High-level Tensor�ow APIs
make it easy to run replicated models on Cloud TPU hardware.

Your TensorFlow applications can access TPU nodes from containers, instances, or services on
Google Cloud. The application requires a connection to your TPU node through your VPC
network (/vpc/docs/using-vpc).

Each TPU version de�nes the speci�c hardware characteristics of a TPU device. The TPU
version de�nes the architecture for each TPU core, the amount of high-bandwidth memory
(HBM) for each TPU core, the interconnects between the cores on each TPU device, and the
networking interfaces available for inter-device communication. For example, each TPU version
has the following characteristics:

TPU v2:

8 GiB of HBM for each TPU core

One MXU for each TPU core

Up to 512 total TPU cores and 4 TiB of total memory in a TPU Pod (#pod)

https://www.tensorflow.org/
https://cloud.google.com/tpu/
https://cloud.google.com/vpc/docs/using-vpc

1/25/2020 System Architecture | Cloud TPU | Google Cloud

https://cloud.google.com/tpu/docs/system-architecture/ 2/9

TPU v3:

16 GiB of HBM for each TPU core

Two MXUs for each TPU core

Up to 2048 total TPU cores and 32 TiB of total memory in a TPU Pod (#pod)

Each TPU core has scalar, vector, and matrix units (MXU). The MXU provides the bulk of the
compute power in a TPU chip. Each MXU is capable of performing 16K multiply-accumulate
operations in each cycle. While the MXU inputs and outputs are 32-bit �oating point values, the
MXU performs multiplies at reduced b�oat16
 (https://github.com/tensor�ow/tensor�ow/blob/master/tensor�ow/core/framework/b�oat16.h)

precision. B�oat16 is a 16-bit �oating point representation that provides better training and
model accuracy than the IEEE half-precision
 (https://en.wikipedia.org/wiki/Half-precision_�oating-point_format) representation.

Each of the cores on a TPU device can execute user computations (XLA ops) independently.
High-bandwidth interconnects allow the chips to communicate directly with each other on the
TPU device. In a TPU Pod con�guration (#pod), dedicated high-speed network interfaces
connect multiple TPU devices together to provide a larger number of TPU cores and a larger
pool of TPU memory for your machine learning workloads.

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/framework/bfloat16.h
https://en.wikipedia.org/wiki/Half-precision_floating-point_format

1/25/2020 System Architecture | Cloud TPU | Google Cloud

https://cloud.google.com/tpu/docs/system-architecture/ 3/9

The increased FLOPS per core and memory capacity in TPU v3 con�gurations can improve the
performance of your models in the following ways:

TPU v3 con�gurations provide signi�cant performance bene�ts per core for compute-
bound models. Memory-bound models on TPU v2 con�gurations might not achieve this
same performance improvement if they are also memory-bound on TPU v3
con�gurations.

In cases where data does not �t into memory on TPU v2 con�gurations, TPU v3 can
provide improved performance and reduced recomputation of intermediate values (re-
materialization).

TPU v3 con�gurations can run new models with batch sizes that did not �t on TPU v2
con�gurations. For example, TPU v3 might allow deeper ResNets and larger images with
RetinaNet.

Models that are nearly input-bound ("infeed") on TPU v2 because training steps are waiting for
input might also be input-bound with Cloud TPU v3. The pipeline performance guide
 (https://www.tensor�ow.org/performance/datasets_performance) can help you resolve infeed issues.

You can determine if the performance of your model will improve from TPU v3 by running
benchmarks on different TPU versions and monitoring the performance using TensorBoard
tools (https://cloud.google.com/tpu/docs/tensorboard-setup).

In a Google data center, TPU devices are available in the following con�gurations for both TPU
v2 and TPU v3:

Single device TPUs (#device), which are individual TPU devices that are not connected to
each other over a dedicated high-speed network. You cannot combine multiple single
device TPU types to collaborate on a single workload.

TPU Pods (#pod), which are clusters of TPU devices that are connected to each other over
dedicated high-speed networks.

https://www.tensorflow.org/performance/datasets_performance
https://cloud.google.com/tpu/docs/tensorboard-setup

1/25/2020 System Architecture | Cloud TPU | Google Cloud

https://cloud.google.com/tpu/docs/system-architecture/ 4/9

A single-device TPU con�guration in a Google data center is one TPU device with no dedicated
high-speed network connections to other TPU devices. Your TPU node connects only to this
single device.

For single-device TPUs the chips are interconnected on the device so that communication
between chips does not require host CPU or host networking resources.

When you create a TPU node, you specify the TPU type. For example, you might specify v2-8 or
v3-8 to con�gure your TPU node with a single device. Single-device TPUs are not part of TPU
Pod (#pod) con�gurations and do not occupy a portion of a TPU Pod. Read the TPU types
 (/tpu/docs/types-zones#device-types) page to see what single-device TPU con�gurations are
available for your TPU nodes.

A TPU pod con�guration in a Google data center has multiple TPU devices connected to each
other over a dedicated high-speed network connection. The hosts in your TPU node distribute
your machine learning workloads across all of the TPU devices.

https://cloud.google.com/tpu/docs/types-zones#device-types

1/25/2020 System Architecture | Cloud TPU | Google Cloud

https://cloud.google.com/tpu/docs/system-architecture/ 5/9

In a TPU Pod, the TPU chips are interconnected on the device so that communication between
chips does not require host CPU or host networking resources. Additionally, each of the TPU
devices in a TPU Pod are connected to each other over dedicated high-speed networks that also
do not require host CPU or host networking resources.

When you create a TPU node, you specify that you want a TPU type that occupies either the full
TPU pod or a smaller fraction of that TPU pod. For example, a v2-512 TPU type occupies a full
v2 TPU Pod and a v2-128 TPU type occupies only 1/4th of a v2 TPU Pod. Read the TPU types
 (/tpu/docs/types-zones#pod-types) page to see what TPU Pod con�gurations are available for
your TPU nodes.

https://cloud.google.com/tpu/docs/types-zones#pod-types

1/25/2020 System Architecture | Cloud TPU | Google Cloud

https://cloud.google.com/tpu/docs/system-architecture/ 6/9

The v2 TPU Pod provides a maximum con�guration of 64 devices for a total 512 TPU v2 cores
and 4 TiB of TPU memory.

The v3 TPU Pod provides a maximum con�guration of 256 devices for a total 2048 TPU v3
cores and 32 TiB of TPU memory.

See the TPU versions (#versions) section to learn more about the architectural differences
between different TPU versions.

You can use the Cloud TPU API (/tpu/docs/reference/rest/) to automate TPU management for
your TPU nodes regardless of their size. As a result, it is easy to scale up to massive compute
clusters, run your workloads, and scale those clusters back down when your workloads are
complete. The hardware support built into the chips results in effectively linear performance
scaling across a broad range of deep learning workloads. In practice, the Cloud TPU software
stack removes the complexity of generating, running, and feeding TPU Cloud programs.

When you run your application, TensorFlow generates a computation graph and sends it to a
TPU node over gRPC. The TPU type that you select for your TPU node determines how many
devices are available for your workload. The TPU node compiles the computation graph just in
time and sends the program binary to one or more TPU devices for execution. Inputs to the
model are often stored in Cloud Storage. The TPU node streams the inputs to one or more TPU
devices for consumption.

https://cloud.google.com/tpu/docs/reference/rest/

1/25/2020 System Architecture | Cloud TPU | Google Cloud

https://cloud.google.com/tpu/docs/system-architecture/ 7/9

The block diagram below shows the Cloud TPU software architecture, consisting of the neural
network model, TPU Estimator and TensorFlow client, TensorFlow server and XLA compiler.

TPU Estimators are a set of high-level APIs that build upon Estimators
 (https://www.tensor�ow.org/programmers_guide/estimators) which simplify building models for
Cloud TPU and which extract maximum TPU performance. When writing a neural network
model that uses Cloud TPU, you should use the TPU Estimator APIs.

https://www.tensorflow.org/programmers_guide/estimators

1/25/2020 System Architecture | Cloud TPU | Google Cloud

https://cloud.google.com/tpu/docs/system-architecture/ 8/9

TPU Estimators translate your programs into TensorFlow operations, which are then converted
into a computational graph by a TensorFlow client. A TensorFlow client communicates the
computational graph to a TensorFlow server.

A TensorFlow server runs on a Cloud TPU server. When the server receives a computational
graph from the TensorFlow client, the server performs the following actions:

1. Load inputs from Cloud Storage

2. Partition the graph into portions that can run on a Cloud TPU and those that must run on
a CPU

3. Generate XLA operations corresponding to the sub-graph that is to run on Cloud TPU

4. Invoke the XLA compiler

XLA is a just-in-time compiler that takes as input High Level Optimizer (HLO) operations that are
produced by the TensorFlow server. XLA generates binary code to be run on Cloud TPU,
including orchestration of data from on-chip memory to hardware execution units and inter-chip
communication. The generated binary is loaded onto Cloud TPU using PCIe connectivity
between the Cloud TPU server and the Cloud TPU and is then launched for execution.

Read Cloud Tensor Processing Units (TPUs) (/tpu/docs/tpus) to compare Cloud TPU to
other processors.

Read the following documents for help with deciding on a service and on Cloud TPU
options:

Choosing a Cloud TPU service (/tpu/docs/deciding-tpu-service)

Choosing a Cloud TPU con�guration (/tpu/docs/types-zones)

https://cloud.google.com/tpu/docs/tpus
https://cloud.google.com/tpu/docs/deciding-tpu-service
https://cloud.google.com/tpu/docs/types-zones

1/25/2020 System Architecture | Cloud TPU | Google Cloud

https://cloud.google.com/tpu/docs/system-architecture/ 9/9

