
1/25/2020 Cloud Tensor Processing Units (TPUs) | Cloud TPU | Google Cloud

https://cloud.google.com/tpu/docs/tpus/ 1/8

Tensor Processing Units (TPUs) are Google’s custom-developed application-speci�c integrated
circuits (ASICs) used to accelerate machine learning workloads. TPUs are designed from the
ground up with the bene�t of Google’s deep experience and leadership in machine learning.

Cloud TPU enables you to run your machine learning workloads on Google’s TPU accelerator
hardware (/tpu/) using TensorFlow (https://www.tensor�ow.org/). Cloud TPU is designed for
maximum performance and �exibility to help researchers, developers, and businesses to build
TensorFlow compute clusters that can leverage CPUs, GPUs, and TPUs. High-level TensorFlow
APIs help you to get models running on the Cloud TPU hardware.

Cloud TPU resources accelerate the performance of linear algebra computation, which is used
heavily in machine learning applications. TPUs minimize the time-to-accuracy when you train
large, complex neural network models. Models that previously took weeks to train on other
hardware platforms can converge in hours on TPUs.

Cloud TPUs are available in the following zones:

https://cloud.google.com/tpu/
https://www.tensorflow.org/

1/25/2020 Cloud Tensor Processing Units (TPUs) | Cloud TPU | Google Cloud

https://cloud.google.com/tpu/docs/tpus/ 2/8

1/25/2020 Cloud Tensor Processing Units (TPUs) | Cloud TPU | Google Cloud

https://cloud.google.com/tpu/docs/tpus/ 3/8

Cloud TPUs are very fast at performing dense vector and matrix computations. Transferring
data between Cloud TPU and host memory is slow compared to the speed of computation—the
speed of the PCIe bus is much slower than both the Cloud TPU interconnect and the on-chip
high bandwidth memory (HBM). This means that partial compilation of a model, where
execution 'ping-pongs' between host and device, uses the device in a very ine�cient way, as it
would be idle most of the time, waiting for data to arrive over the PCIe bus. To alleviate this
situation, the programming model for Cloud TPU is designed to execute much of the training on
the TPU—ideally the entire training loop.

Following are some salient features of the programming model implemented by TPUEstimator
 (https://www.tensor�ow.org/api_docs/python/tf/estimator/tpu/TPUEstimator):

All model parameters are kept in on-chip high bandwidth memory.

The cost of launching computations on Cloud TPU is amortized by executing many
training steps in a loop.

Input training data is streamed to an "infeed" queue on the Cloud TPU. A program running
on Cloud TPU retrieves batches from these queues during each training step.

The TensorFlow server running on the host machine (the CPU attached to the Cloud TPU
device) fetches data and pre-processes it before "infeeding" to the Cloud TPU hardware.

https://www.tensorflow.org/api_docs/python/tf/estimator/tpu/TPUEstimator

1/25/2020 Cloud Tensor Processing Units (TPUs) | Cloud TPU | Google Cloud

https://cloud.google.com/tpu/docs/tpus/ 4/8

Data parallelism: Cores on a Cloud TPU execute an identical program residing in their own
respective HBM in a synchronous manner. A reduction operation is performed at the end
of each neural network step across all the cores.

Cloud TPUs are optimized for speci�c workloads. In some situations, you might want to use
GPUs (/compute/docs/gpus/) or CPUs on Compute Engine instances to run your machine learning
workloads. In general, you can decide what hardware is best for your workload based on the
following guidelines:

CPUs

Quick prototyping that requires maximum �exibility

Simple models that do not take long to train

Small models with small effective batch sizes

Models that are dominated by custom TensorFlow operations written in C++
 (https://www.tensor�ow.org/extend/adding_an_op)

Models that are limited by available I/O or the networking bandwidth of the host
system

GPUs

Models that are not written in TensorFlow or cannot be written in TensorFlow

Models for which source does not exist or is too onerous to change

Models with a signi�cant number of custom TensorFlow operations that must run
at least partially on CPUs

Models with TensorFlow ops that are not available on Cloud TPU (see the list of
available TensorFlow ops (/tpu/docs/tensor�ow-ops))

Medium-to-large models with larger effective batch sizes

TPUs

Models dominated by matrix computations

https://cloud.google.com/compute/docs/gpus/
https://www.tensorflow.org/extend/adding_an_op
https://cloud.google.com/tpu/docs/tensorflow-ops

1/25/2020 Cloud Tensor Processing Units (TPUs) | Cloud TPU | Google Cloud

https://cloud.google.com/tpu/docs/tpus/ 5/8

Models with no custom TensorFlow operations inside the main training loop

Models that train for weeks or months

Larger and very large models with very large effective batch sizes

Cloud TPUs are not suited to the following workloads:

Linear algebra programs that require frequent branching or are dominated element-wise
by algebra. TPUs are optimized to perform fast, bulky matrix multiplication, so a workload
that is not dominated by matrix multiplication is unlikely to perform well on TPUs
compared to other platforms.

Workloads that access memory in a sparse manner might not be available on TPUs.

Workloads that require high-precision arithmetic. For example, double-precision arithmetic
is not suitable for TPUs.

Neural network workloads that contain custom TensorFlow operations written in C++.
Speci�cally, custom operations in the body of the main training loop are not suitable for
TPUs.

Neural network workloads must be able run multiple iterations of the entire training loop on the
TPU. Although this is not a fundamental requirement of TPUs themselves, this is one of the
current constraints of the TPU software ecosystem that is required for e�ciency.

A typical TensorFlow training graph consists of multiple overlapping subgraphs which provide
a variety of functionality including:

I/O operations to read training data.

Input preprocessing stages, often connected via queues.

Model variables.

Initialization code for those variables.

The model itself.

Loss functions.

1/25/2020 Cloud Tensor Processing Units (TPUs) | Cloud TPU | Google Cloud

https://cloud.google.com/tpu/docs/tpus/ 6/8

Gradient code (usually automatically generated).

Summary ops for monitoring training.

Save/Restore ops for checkpointing.

On Cloud TPU, TensorFlow programs are compiled by the XLA
 (https://www.tensor�ow.org/performance/xla/) just-in-time compiler. When training on Cloud TPU,
the only code that can be compiled and executed on the hardware is that corresponding to the
dense parts of the model, loss and gradient subgraphs. All other parts of the TensorFlow
program run on the host machines (Cloud TPU server) as part of a regular distributed
TensorFlow session. This typically consists of the I/O operations which read training data, any
preprocessing code (for example: decoding compressed images, randomly sampling/cropping,
assembling training minibatches) and all of the housekeeping parts of the graph such as
checkpoint save/restore.

A single Cloud TPU chip contains 2 cores, each of which contains multiple matrix units (MXUs)
designed to accelerate programs dominated by dense matrix multiplications and convolutions
(see Hardware Architecture (/tpu/docs/system-architecture#hardware_architecture)). Programs that
spend a considerable fraction of their execution time performing matrix multiplications are
typically well suited to Cloud TPU. A program whose computation is dominated by non-matrix
operations such as add, reshape, or concatenate, will likely not achieve high MXU utilization.
Following are some guidelines to help you choose and build models that are suitable for Cloud
TPU.

A single Cloud TPU device consists of four chips, each of which has two TPU cores. Therefore,
for e�cient utilization of Cloud TPU, a program should make use of each of the eight cores.
TPUEstimator (https://www.tensor�ow.org/api_docs/python/tf/estimator/tpu/TPUEstimator) provides
a graph operator to build and run a replicated computation
 (https://www.tensor�ow.org/api_docs/python/tf/contrib/tpu/replicate). Each replica is essentially a
copy of the training graph that is run on each core and trains a mini-batch containing 1/8th of
the overall batch size.

https://www.tensorflow.org/performance/xla/
https://cloud.google.com/tpu/docs/system-architecture#hardware_architecture
https://www.tensorflow.org/api_docs/python/tf/estimator/tpu/TPUEstimator
https://www.tensorflow.org/api_docs/python/tf/contrib/tpu/replicate

1/25/2020 Cloud Tensor Processing Units (TPUs) | Cloud TPU | Google Cloud

https://cloud.google.com/tpu/docs/tpus/ 7/8

The XLA compiler performs code transformations, including tiling a matrix multiply into smaller
blocks, to e�ciently execute computations on the matrix unit (MXU). The structure of the MXU
hardware, a 128x128 systolic array (https://en.wikipedia.org/wiki/Systolic_array), and the design of
TPU’s memory subsystem, which prefers dimensions that are multiples of 8, are used by the
XLA compiler for tiling e�ciency. Consequently, certain layouts are more conducive to tiling,
while others require reshapes to be performed before they can be tiled. Reshape operations are
often memory bound on the Cloud TPU.

The XLA compiler compiles a TensorFlow graph just in time for the �rst batch. If any
subsequent batches have different shapes, the model doesn't work. (Re-compiling the graph
every time the shape changes is too slow.) Therefore, any model that has tensors with dynamic
shapes that change at runtime isn’t well suited to TPUs.

A high performing Cloud TPU program is one where the dense compute can be easily tiled into
128x128 chunks. When a matrix computation cannot occupy an entire MXU, the compiler pads
tensors with zeroes. There are two drawbacks to padding:

Tensors padded with zeroes under-utilize the TPU core.

Padding increases the amount of on-chip memory storage required for a tensor and can
lead to an out-of-memory error in the extreme case.

While padding is automatically performed by the XLA compiler when necessary, one can
determine the amount of padding performed by means of the op_pro�le
 (/tpu/docs/cloud-tpu-tools#interpreting_the_results_1) tool. You can avoid padding by picking tensor
dimensions that are well suited to TPUs.

Choosing suitable tensor dimensions goes a long way in extracting maximum performance
from the TPU hardware, particularly the MXU. The XLA compiler attempts to use either the
batch size or the feature dimension to maximally utilize the MXU. Therefore, one of these must

https://en.wikipedia.org/wiki/Systolic_array
https://cloud.google.com/tpu/docs/cloud-tpu-tools#interpreting_the_results_1

1/25/2020 Cloud Tensor Processing Units (TPUs) | Cloud TPU | Google Cloud

https://cloud.google.com/tpu/docs/tpus/ 8/8

be a multiple of 128. Otherwise, the compiler will pad one of them to 128. Ideally, batch size as
well as feature dimensions should be multiples of 8, which enables extracting high
performance from the memory subsystem.

See the list of available TensorFlow ops (/tpu/docs/tensor�ow-ops).

Arti�cial intelligence (AI) models trained in the cloud increasingly need to be run "at the edge".
For the purposes of this document, "at the edge" means devices running on the edge of the
Internet of Things (IoT). These include a wide variety of sensors and smart devices that pick up
and communicate real-time data to other devices and to the cloud.

Edge TPU augments Cloud TPU and Cloud IoT to provide an end-to-end (cloud-to-edge,
hardware + software) infrastructure to facilitate deploying AI-based solutions.

Edge TPU is currently in early access. For information on this program, see the early access
page (/edge-tpu/).

Read the TPU quickstart (/tpu/docs/quickstart) to get started using Cloud TPU resources.

Complete one of the Cloud TPU tutorials (/tpu/docs/tutorials) to learn how to run common
machine learning workloads on Cloud TPU resources.

https://cloud.google.com/tpu/docs/tensorflow-ops
https://cloud.google.com/edge-tpu/
https://cloud.google.com/tpu/docs/quickstart
https://cloud.google.com/tpu/docs/tutorials

